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Abstract 
In this paper, we study mathematically the psychological effect of media on the transmission dynamics of contagious diseases [1]. 

The SIR model based on compartment theory[18] consisting of three compartments: susceptible, infected and recovered with the 

transmission function as modified Beddington-DeAngelis function including a parameter governing media awareness is 

considered. The governing differential equations are defined for the dynamical system. The reproduction number 𝑅0, of the model, 

is calculated using the Jacobian matrix method [12] and is found to depend on m (parameter controlling media) and δ (a measure 

of inhibition due to awareness of infected). The stability of the dynamical system at the equilibrium points is discussed. The 

numerical solution is obtained by varying the introduced parameters of the above-said function and analysed graphically. 
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1. Introduction 

The compartment model theory has been used to 

understand the transmission dynamics of the 

contagious diseases like Zeka, HIV, Influenza 

including Coronavirus COVID19 [19][20][21] using 

differential equations. Many deterministic models were 

also developed and applied to understand the dynamics 

of several infectious diseases [5][6][9][11] [27]. 

The total population is divided into different 

compartments based on an individual's stage [34]. The 

basic SIR model developed by Kermack and Mc 

Kendrick’s introduced three compartments called as 

S(t), I(t) and R(t), which denote the number of 

susceptible, contagious (infected and infectious) and 

recovered/removed individuals at any time t, 

respectively. This model is suitable for diseases which 

grant permanent immunity after recovery or individual 

is removed from the system.  

The transmission of the disease from the susceptible 

compartment to the infected compartment is defined 

using the incidence rate. The bilinear incidence rate 

βS(t) (β is the transmission rate of the disease) has 

been studied[16][17][18] with the assumption that the 

susceptible population is large. If the population is 

saturated with infected individuals, then the number of 

contacts between infected individuals and susceptible 

individuals may decrease due to the quarantine of 

infectious individuals or protective measures taken by 

susceptible individuals, hence the rate of infection may 

depend non-linearly to I(t)[2][3]. The different kind of 

saturated incidence function depending on susceptible 

and infected βS/(1+αS) or βS/(1+αI)[23], Beddington–

DeAngelis incidence function βS/(1+αS+βI)[1][3] 

Crowley–Martin incidence function 

βS/(1+αS+βI+αβSI) [7][26][35][36], the specific 

nonlinear incidence function βS/(1+αS+βI+γSI) 

[13][14][15] and the non-monotone incidence function 

βS/(1+ αI2) [35] has been studied. 

In this paper, we use the SIR model to study the role of 

media and its psychological/inhibition effect in 

understanding the dynamics of infectious diseases 

[10]. The impact of media can’t go on increasing 

forever on the spread of disease and therefore attains 

saturation. The impact of media on susceptible 

populations is governed by Holling type II functional 

response [24][28]. The growth rate of the cumulative 

density of awareness programs driven by the media is 

proportional to the number of infective present in the 

population. Further, awareness about the disease will 

alert susceptible to isolate them from infective and 

avoid being infected by forming a separate class [10]. 

From the cholera epidemic spread in Bari during 1973, 

[4] introduced a saturated incidence rate g(I)S into 

epidemic models, where g(I) tends to a saturation level 

when I is large, kI/(1+αI2) where kI measures the 

infection force of the disease and 1/(1+ αI2) measures 

the inhibition effect from the behavioural change of the 

susceptible individuals when their number increases or 

from the crowding effect of the infective individuals, 

also it reduces to bilinear incidence rate when α=0. An 

epidemic model with a specific nonlinear incident rate 
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kI2S/(1+I2) is studied by[30]. They derived sufficient 

conditions to ensure that the system has none, one, or 

two limit cycles. The general incidence rate kIpS/(1+ 

αIq) was proposed by [25], and studied in [9] [16] [17] 

[18]. The simple media function IS/(1+I) was studied 

by [32]. 

Many other mathematical models have investigated the 

impact of media coverage on the transmission 

dynamics of infectious diseases by incorporating a 

nonlinear function depending on the number of 

infective individuals I/(m+ I) in their transmission 

[8][31][33]. The function is a continuous bounded 

function that takes into account disease saturation or 

psychological effects, it may be noted that in this 

model the basic reproduction number is independent of 

m (media factor). 

We propose to study the psychological effect of media, 

modifying the Beddington-DeAngelis function 

βSI/(m+αS+βI) [3], a saturated incidence function 

considering into account of both susceptible and 

infected. The denominator has three terms, m denotes 

the rate with which media is creating awareness 

causing inhibition or psychological impact. 

The paper is organised as follows: In section 2, we 

state the mathematical equations of the model. The 

basic reproduction number and stability is discussed at 

the equilibrium points using Lyapunov function in 

section 3, disease equilibrium. Section 4, discusses the 

importance of the parameters related to the 

psychological impact on susceptible and infected using 

a numerical solution. Finally, section 5 has concluding 

remarks. 

2. Formulation 

We consider the SIR model to study the transmission 

dynamics of contagious disease where the total initial 

population is divided into three compartments namely, 

susceptible S(t), contagious I(t) and recovered R(t), 

where t is the time variable measured in minutes, 

hours, days, months or years. Let N be the total 

population in the system at any time t, S(t) denotes the 

number of susceptible to be infected at any time t. The 

population moves from the compartment of susceptible 

S to the compartment of infected I depending on the 

number of contacts infected multiplied by the 

probability of infection β where βI /N is the average 

number of contacts infected with a disease in per unit 

time t. Here, we consider modified Beddington-

DeAngelis to include psychological effect/inhibition 

due to awareness about susceptible and infected, and 

the rate with which awareness is being created. The 

infected I recover with a rate γ, the recovered means 

individuals who will return into the class S 

(susceptible) with a rate σ, called the rate of recovery. 

The reciprocal σ-1 is called the recovery period. Λ is 

called recruitment rate while µ is the average rate of 

deaths. Λ and µ describe a model with vital dynamics 

(endemic model), which has an inflow of births into 

the class S at a rate Λ and outflow (deceased) from any 

compartment C at a rate µC. This model is based on 

the assumptions proposed by [16][19]. The population 

size is constant and large enough so that the population 

of each compartment as continuous and all individuals 

have the same contact rate in the population. 

 

 

 

 

 

The governing differential equations of the model are: 

𝑑𝑆

𝑑𝑡
= 𝛬𝑁 − 

𝛽 𝑆(𝑡)𝐼(𝑡)/𝑁

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)
− 𝜇 𝑆(𝑡)  

+  𝜎𝑅(𝑡)            (1) 

𝑑𝐼

𝑑𝑡
=

𝛽 𝑆(𝑡)𝐼(𝑡)/𝑁

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)

− (𝜇 + 𝛾)𝐼(𝑡)                                  (2) 
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) − (µ

+ 𝜎) 𝑅(𝑡)                                                         (3) 

Where   N(t) =  S(t) +  I(t) + R(t),                                                        

(4) 

    S(0)=S0 ≥ 0, I(0)=I0 ≥ 0, R(0)=R0 ≥0. 

The equations (1) - (4) are re-written using 

dimensionless variables: 

S' = S/N, I'=I/N, R'=R/N, then omitting dashes, we 

obtain 

𝑑𝑆

𝑑𝑡
= 𝛬 −  

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)
− 𝜇 𝑆(𝑡)  

+  𝜎𝑅(𝑡)                (5) 

𝑑𝐼

𝑑𝑡
=

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)

− (𝜇

+ 𝛾)𝐼(𝑡)                                  (6) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) − (µ

+ 𝜎) 𝑅(𝑡)                                                         (7) 

Where  1 =  S(t) +  I(t) + R(t),                                                              

(8) 

3. Disease Equilibrium 

Positivity of the Solution: We show that the model 

equations (6-8) are biologically and 

epidemiologically meaningful and well-posed as 

the solutions of all the stated variables are non-

negative. 

Theorem 1: If S(0) > 0, I(0) > 0 and R(0) > 0, 

then the solution region S(t), I(t), R(t) of the 

system of equations (6 - 8) is always non-

negative.  

Proof: Consider each differential equation 

separately and show that its solution is positive. 

Theorem 2: Positivity of recovered: Considering 

the differential equation (9) of the system 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) − (µ + 𝜎) 𝑅(𝑡)  ≥  −(𝜎 + µ)𝑅(𝑡)  

 I(t) is positive in time t. On integrating, the 

solution is 𝑅 = 𝑅0𝑒−∫ (𝜎+µ)
𝑡

0
𝑑𝑡. It is clear from the 

solution that R(t) is positive since R0 > 0 and the 

exponential function is always positive. 

Theorem 3: Positivity of infected population: 

Considering (6) and that can be rewritten: 

𝑑𝐼

𝑑𝑡
=

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)
− (𝜇 + 𝛾)𝐼(𝑡)

≥ −(𝜇 + 𝛾)𝐼(𝑡) .                            

On, integrating the solution is 𝐼 = 𝐼0𝑒−∫ (𝜇+𝛾
𝑡

0
)𝑑𝑡. 

It is clear from the solution that I(t) is positive 

since I0 > 0 and the exponential function is always 

positive. 

Theorem 4: Positivity of susceptible population: 

Finally, we consider the differential equation (5): 

𝑑𝑆

𝑑𝑡
= 𝛬 −  

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)
− 𝜇 𝑆(𝑡)  

+  𝜎𝑅(𝑡)

≥ −  
𝛽 𝑆(𝑡)𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)

− 𝜇 𝑆(𝑡)           

Λ is the rate of birth and R(t), being positive, we 

can write as: 

𝑑𝑆

𝑆(𝑡)
=   −( 

𝛽 𝐼(𝑡)

𝑚 + 𝛼 𝐼(𝑡) + 𝛿𝑆(𝑡)
+ 𝜇) 𝑑𝑡 

On, integrating the solution is 𝑆 =

𝑆0𝑒−∫ (
𝛽 𝐼(𝑡)

𝑚+𝛼 𝐼(𝑡)+𝛿𝑆(𝑡)
+µ)

𝑡
0

𝑑𝑡
. It is clear from the 

solution that S(t) is positive since S0 > 0 and the 

exponential function is always positive. 

The model equations (5-8) are biologically and 

epidemiologically meaningful and well-posed as 
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the solutions of all the state variables are bounded.  

As                                 

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0 

On adding Eqn. (5)-(7), we obtain 

𝛬 −   𝜇 𝑆(𝑡) = 0                 

Therefore, the feasible region for the system is 

given by (S*, I*, R*) 

S∗ =
𝛬

𝜇
, I∗ = 0, R∗ = 0, 

𝜔 = [(𝑆∗, 𝐼∗, 𝑅∗) ∈ 𝑅3+ ∶ 𝑆∗ + 𝐿∗ + 𝑅∗  ≤
𝛬

𝜇
 

Therefore, ( 
𝛬

µ
, 0, 0) is the Disease Free 

Equilibrium (DFE) point. Hence, it sufficient to 

consider solutions in the region 𝜔. The solutions 

of the initial value problem starting in 𝜔 and 

defined by (5) - (7) exist and are unique on a 

maximal interval. Since the solution remains 

bounded in the positively invariant region 𝜔, the 

maximal interval defined is [0, 1). So, the initial 

value problem is both well-posed and is positive. 

The above system always has a disease-free 

equilibrium: 

(
𝛬

𝜇
, 0, 0) 

The reproduction number R0 can be computed 

using the Jacobian Matrix method. The 

characteristic polynomial is: 

−
(𝜆 + 𝜇)(−𝛽𝛬 + (𝛾 + 𝜆 + 𝜇)(𝛼𝛬 + 𝑚𝜇))(𝜆 + 𝜇 + 𝜎)

𝛼𝛬 + 𝑚𝜇
 

The Eigenvalues are:    𝜆1 = −𝜇, 

𝜆2 =
𝛽𝛬 − 𝛼𝛾𝛬 − 𝑚𝛾𝜇 − 𝛼𝛬𝜇 − 𝑚𝜇2

𝛼𝛬 + 𝑚𝜇
, 

𝜆3 = −𝜇 − 𝜎. 

As all the Eigen-values are negative for a system 

to be asymptotically stable, so 

𝛽𝛬 − 𝛼𝛾𝛬 − 𝑚𝛾𝜇 − 𝛼𝛬𝜇 − 𝑚𝜇2

𝛼𝛬 + 𝑚𝜇
< 0, 

We obtain 

𝑅0 =
𝛽𝛬

(𝛼𝛬 + 𝑚𝜇)(𝛾 + 𝜇)
< 1  

The basic reproduction number R0 depends on 

both m and α (coefficient of I(t)) and is 

independent of δ, coefficient of S(t). Thus, the 

awareness about the infected has a psychological 

impact on the growth of the disease and can be 

meticulously used to curb its spread (function 

being saturated).  

Consider the Lyapunov function [2]: 

𝑉 = 𝑊1 (𝑆 − 𝑆∗log 
𝑆

𝑆∗
) + 𝑊2 (𝐼 − 𝐼∗log 

𝐼

𝐼∗
) 

Substituting the value of �̇�, and 𝐼̇ from equation 

(5) and (6)  

�̇� = 𝑊1(𝑆 − 𝑆∗)( 
𝛬

𝑆
−

𝛽 𝐼

𝑚 + 𝛼 𝐼 + 𝛿𝑆
− 𝜇 )

+ 𝑊2(𝐼 − 𝐼∗)( 
𝛽 𝐼

𝑚 + 𝛼 𝐼 + 𝛿𝑆
− (𝜇

+ 𝛾)) 

Let the equilibrium points be  

𝜇 =
𝛬

𝑆∗
−

𝛽𝐼∗

𝑚 + 𝛼𝐼∗ + 𝛿𝑆∗
 , 𝜇 + 𝛾

=
𝛽 𝐼∗

𝑚 + 𝛼 𝐼∗ + 𝛿𝑆∗
 

=
𝑊1𝑚𝛽(𝐼 − 𝐼∗ )(𝑆 − 𝑆∗ )  − 𝑊1 𝛽2 (𝑆∗ 𝐼 − 𝑆𝐼∗ )(𝑆 − 𝑆∗ )

(𝑚 + 𝛼𝐼 + 𝛿𝑆)(𝑚 + 𝛼𝐼∗ + 𝛿𝑆∗)

− 𝑊1

𝛬(𝑆 − 𝑆∗)2

𝑆𝑆∗

+
𝑊2𝑚𝛽(𝐼 − 𝐼∗ )(𝑆 − 𝑆∗) + 𝑊2𝑚𝛼𝛽 (𝑆∗𝐼 − 𝑆𝐼∗ )(𝐼 − 𝐼∗ )

(𝑚 + 𝛼𝐼 + 𝛿𝑆)(𝑚 + 𝛼 𝐼∗ + 𝛿𝑆∗)
 

�̇�  ≤ 0  for S< S*, I < I*  , SI* < S*I, W1=1, W2=-1 

and also for S = S*, I = I*, �̇� = 0 

Therefore, by La Salle’s Invariance principle [12], 

the endemic system is globally asymptotically 

stable [22][29]. 
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4. Numerical Solution 

We solve dimensionless differential equations (5) 

to (7) numerically using the NDSolve function of 

Wolfram Mathematica. The numerical solutions of 

S(t), I(t) and R(t), are plotted for different values 

of parameters viz. m, α and δ. A typical view of 

the solutions of S(t), I(t) and R(t) for the 

parameters: t=50, Λ=μ=.01, γ=0.13, σ=.011, δ=1, 

α=1 and m=.01, .1, 1 and 5 (Fig. 2-5). As m 

(awareness through media about infected) 

increases, the peak of the infected I(t) is reduced 

giving a positive relation between m and I(t). The 

psychological effect of the media m plays an 

important role in controlling the spread of the 

disease

 

 

 

 

 

 

 

 

 

 

 

 

The effect of α (coefficient of I(t)), is varied from .01 

to 5. The values of α =.01, 0.1, 1 and 5, as it increases, 

the graph of infected I(t) also increases (Fig. 6-9). The 

graph of S(t) shows a decline in the numbers of 

susceptible due to inhibitive or psychological measures 

by the susceptible due to the awareness created about 

infected and hence the recovery is also improved 

(graph of R(t) attains a new peak). 
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The effect of δ (Coefficient of S(t)) is studied by 

plotting graph of S(t), I(t) and R(t) for different values 

of  δ = .01, 0.1, 1 and 5 (Fig. 10-13). It has been found 

that as δ increases, a measure of inhibitory or 

psychological measures by creating awareness about 

susceptible, the graph of susceptible drops quickly 

with time while recovery is also improved. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

The model in this study is based on compartment 

theory, as a SIR model with the transmission of disease 

based on Beddington-DeAngelis incidence function. 

The modified Beddington-DeAngelis incidence 

function is studied for understanding the psychological 

effect of media and consequently psychological effect 

or inhibitory measures taken by susceptible and 

infected to control the contagious diseases. It has been 

found that the media plays a significant role in creating 

awareness or psychological effect in the dynamics of 

contagious disease in a population. The inhibitory 

effects of creating awareness about infected create 

psychological effects which can control the growth of 

the disease to a limit as the function itself is saturated. 

The basic reproduction number R0 is calculated using 

the characteristic equation and found to depend on the 

media and the factor α which is the inhibitive 

psychological measure by creating awareness about 

infected by media. The equilibrium points for the 

dynamical system are computed and found to be 

asymptotically stable using the Lyapunov method.  
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