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ABSTRACT  

In this work, a method for reduction of higher order system (HOS) into a low order model has been developed through modified Krylov 

subspace (MK-S) method, which is a combination of Routh-Padé approximation (RPA) method and Krylov subspace method. A low order 

controller has been then developed for this reduced order model (ROM). The controller is then implemented to the HOS and the performance of 

the HOS is evaluated. The comparison between responses of HOS and ROM has been done for some example problems and presented in the 

results. The results validate the efficacy of the designed low order controller for the higher order systems using proposed method. 
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Introduction 
 

In the recent past, approximation of a higher order linear 

system by a low order model has received a substantial 

attention. A wide range of model order reduction techniques 

[1,2] have been proposed either in frequency domain or time 

domain in the recent past to reduce the order of a higher 

order system. Some of the frequency domain techniques are 

Padé approximation [3], Routh approximation [4-9], Routh-

Padé approximation [10-11] and in time domain the 

techniques are like singular value decomposition (SVD) [12-

14], balancing and truncation [12], Krylov subspace (K-S) 

[15-22, 32] methods. In the K-S method, Taylor series 

expansion is used to match some of the lower order 

coefficients of the original system transfer function and 

reduced order system transfer function. In this method, the 

matching of coefficients are done based on time moment 

matching and Markov moments matching[23]. When the 

matching is around 0=s , time moments matching is 

achieved and around =s , Markov parameters matching is 

achieved. Krylov subspace is used to calculate projection 

matrices. After obtaining the projection matrices, these are 

used in the system matrices of the higher order system 

resulting in reduced order models. In this approach, the 

algorithms proposed by Lanczos [24], the Arnoldi [25-26] 

and two-sided Arnoldi [27-28] are used, which are 

numerically efficient methods. K-S method is also referred 

as method by projection in which projection is done from 

high dimensional space to the lower dimensional space and 

vice-versa using the concept of input and output subspaces. 

These days K-S method has become the best choice for 

reduction of order for very high order systems.  However, 

the K-S method has a drawback that stability of the reduced 

order model is uncertain [29-33].  

There are certain advantages of linear simple controllers 

over complex linear controllers such as less computational 

requirements. Hence, linear simple controllers are preferred. 

A brief review of different approaches for reduction of order 

of controller has been presented by Anderson and Liu in 

[34]. These approaches are divided into direct and indirect 

methods [35]. In direct methods, a low order controller is 

obtained directly [36-39] in which, usually a quadratic 

optimization problem is solved with an order constraint and 

a constraint of close loop stability. The indirect methods are 

of two types [40]. In the first type, a high order controller 

are derived from the original high order plants, by using 

some linear quadratic Gaussian (LQG) or H design 

method, and then an approximation of the controller is 

determined. In the second type, a low order plant transfer 

function is computed from the original plant transfer 

function, and then a low order controller is designed to 

control the original plant. 

In [34], a review of indirect strategies of first type have been 

presented and discussed using balanced realization [41-43], 

Hankel norm optimal approximation [34, 44-47], and q-

covariance equivalent realization [48-50]. These techniques 

usually replace a stable high order model by other stable low 

order model which is not an optimal L approximation. 

Further, in these techniques, no frequency weighting is 

generally employed  34 . However, in literature some 

frequency weighted versions are available for the first two 

methods in [51-53]. 

In this research work, first a higher order system (HOS) is 

approximated by using K-S method to reduce into a low 

order model (ROM). An indirect method of second type for 

reduction of order of controller is then used to design a low 

order controller for this ROM. The low order controller is 

then connected to the HOS and the performance of the HOS 

is evaluated and compared. 

With the help of Routh-Padé approximation (RPA) method 

stability of the ROM is preserved [11,29]. The proposed 

method is termed as a modified Krylov subspace (MK-S) 

method. It combines RPA method to guarantee stability. In 

the first step, K-S method is used to derive the ROM. If the 

model turns out to be stable, the algorithm is terminated. If 

not, a next stable higher order 

model ( )( )...321 +++ orrorrrsGk is identified. Then RPA 
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method is used to obtain a stable ROM as the second step. 

Then, a suitable controller is designed for the original as 

well as reduced order system. Thus, the proposed method 

completely or closely matches r2 terms (time 

moments/Markov parameters) of the original HOS and 

ROM and also preserves stability.  

This paper has been organized as follows: For completion of 

presentation and clarity, the K-S method [18-22] and Routh-

Padé approximation methods [11,29] have been reproduced 

in the Section 2. In Section 3, basic concepts of controller 

design have been presented. The proposed MK-S method 

has been explained in the Section 4. Section 5 deals with 

different numerical examples and their results. The last 

section comprises of the conclusion of proposed algorithm. 

 

Krylov Subspace Method 

 

In this section, the K-S method has been described. Consider 

a general single input single output (SISO) system [18,22], 

whose state model is given by   

buAxxE +=
.

                              ( )1  

 xcy T=      ( )2  

The input variable is u and output variable is y. The number 

of state variables n is the order of the system, where E, A, b 

and c represent the descriptor matrix, state matrix, input 

matrix and output matrix, respectively.  

The transfer function )(sGn of the system in ( )1 , ( )2 is 

described as  

bAsEcsG T
n

1)()( −−=       ( )3  
iiTTT bsAEAcbsAEAcbAc 11111 )()( −−−−− −−−=         ( )4   

...)(...)( 1121111 ++++= −−−−−−−− iiTT bsEAEcbsEAEcbsEc   ( )5  

Equation (4) and (5) are the Taylor series expansions of the 

transfer function ( )3 around 0→s and →s , respectively. 

It is desired to obtained a Krylov reduced order model of 

order r  of the form 

ubxAxE rrrr +=
.

       ( )6  

r
T
r xcy =         ( )7  

 for which 

rrr
T
rr bAsEcsG 1)()( −−=        ( )8  

Where, ,EVWE T
r =  ,AVWA T

r =  

,bWb T
r =   ,Vcc TT

r =  

 
and

 rrr bAE ,, and T

r
c are obtained by applying projections 

from V andW to system ( )1 and ( )2 . Matrices V andW are 

projection matrices. Thus, to determine a Krylov reduced 

order model, the projection matrices V and W which are basis 

of input Krylov subspace ),( 11
1 bAEAKr

−−  and output Krylov 

subspace ),(2
TTTT

r cAEAK −−  respectively, chosen as   

( )








== −−−−−− bAEAbAspanbAEAKV
r

r
111111

1 ,...),(   ( )9  

( )








== −−−−−− TTrTTTTTTTT
r cAEAcAspancAEAKW

1

2 ,...),(

 ( )10 with TcbAE ,,, from 

system ( )1 , ( ),2 with ( ) .1 TT AA −− =              

By suitably changing the starting vectors bAEA 11 , −− in input 

Krylov subspace and TTTT cAEA −− , in output Krylov 

subspace, some of the moments as well as some of the 

Markov parameters can be matched. The 

matricesV and W will be, 

))(,( 111 1
1

bAAEEAK
l

r

−−− and )),(,( 2
2

TTlTTTT
r cAAEEAK −−−  

respectively, both with rank r where Zll 21, and 

rll  21,0 then  the first 212 llr −− moments and the first 

lll =+ 21  Markov parameters of the system in ( )1 , ( )2  and 

Krylov reduced order model will match  .18  

While building up Krylov subspace, numerical problems 

may arise. To avoid this, classical Arnoldi  25   algorithm 

may be used, which finds a set of orthogonal vectors as a 

basis of a given Krylov subspace  .22  

 

Routh-Padé Approximation Method 

 

In this section, the Routh-Padé approximation method has 

been described. Let the transfer function ( )sGk  of a kth order 

system is represented as: 

                 
k

kk

k
kk

k
dsds

asasa
sG

+++

+++
=

−

−−

...

...
)(

1
1

2
2

1
1   ( )11  

...... 1
21 ++++= −k

k ststt      ( )12  

 

......2
2

1
1 ++++= −−− k

k sMsMsM     ( )13  

 

Equation (12) and (13) are Taylor series expansions of this 

transfer function around 0→s and →s , respectively. The 

coefficients of series in ( )12 and ( )13 are called time moments 

and Markov parameters, respectively. 

It is desired to obtained a ROM of order r )( kr  as 

'1'
1

'2'
2

1'
1

...

...
)(

r
rr

r
rr

rk
dsds

asasa
sG

+++

+++
=

−

−−

   ( )14  

...... 1''
2

'
1 ++++= −r

r ststt     ( )15  

...... '2'
2

1'
1 ++++= −−− r

r sMsMsM    ( )16  

 

The RPA method is basically a nonlinear optimization 

procedure in which not only first r terms (time moments/ 

Markov parameters) are fully retained but errors between 

the subsequent time moments /Markov parameters are also 

minimized preserving stability. 

The formulation of the objective function has been 

explained, assuming r even. For this, it can be verified that, 

when the following equations hold true 


=

+−−+ =

i

j

jirjir dta

1

''
1

' ,      
=

−=

i

j

jiji dMa

1

''' for 

2/,...1 ri =       ( )17  

   1'

1

1

1

1

'
1

''' −

−

=

−+

=

−−++−
















+−=   r

i

j

ir

j

jirjjirji ddMdtt   ( )18    

 
−+

=

−

=

−+− −=

ir

j

i

j

jijjiji dMdtM

1

1

1

1

''
1

''  

for ,...2
2

,1
2

++=
rr

i  

where, 0;1 ''
0 == idd for   0,;,...,0 '' = ii Mtri for .1i  

A stable model for which r equations given by 

       ,0' =− ii tt   ,0' =− ii MM  for 2/,...1 ri =     ( )19  
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are satisfied is sought, with ( )19 , equation ( )17 becomes 

 
=

+−−+ =

i

j

jirjir dta

1

'
1

' , ,

1

'' 
=

−=

i

j

jiji dMa  for 2/,...1 ri =  ( )20  

There may be infinite number of stable models for which 

equation ( )20 is satisfied  23,8 . To exploit this arbitrariness, 

an objective function Z is constructed to minimize a 

weighted squared sum of the errors of matching time 

moments and Markov parameters of the system with those 

of the model, i.e., to minimize Z  


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i
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i
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M

t

t
Z      ( )a21  

 where si
' ,and si

' are nonnegative numbers. It may be 

noted that ( )a21 can be adjusted if only time moments are 

considered as  

   
=

+

+














−=

r

i
ir

ir
i

t

t
Z

1

2
'

1             ( )b21  

and if only Markov parameters are considered ( )a21 takes the 

following form:           

 
=

+

+














−=

r

i
ir

ir
i

M

M
Z

1

2
'

1       ( )c21  

Using ( )18 subject to ( )19 , the objective function Z can be 

expressed as  

                  ( )''
1,..., rddfZ =            ( )22  

The formulation for r being odd can be done in a similar 

manner. For stability preservation, following  30 , the 

denominator coefficients of ( )14 can be expressed as 

,'1
'
1 bd =    ,... ''

3
'
2

'
2 rbbbd +++= ( )...,... ''

4
'
3

'
1

'
3 rbbbbd +++=  

  ,... ''
2

'
3

'
1

'
rrr bbbbd −++=            ( )23  

where, 1=  for even r  and 0= for odd r , for a given r , 

( )23 can be written by constructing a Routh array which has, 

in its first column, the entries  30  

         ''
2

'
3

'
1

'
5

'
3

'
1

'
4

'
2

'
3

'
1

'
2

'
1 ...,...,,,,,,1 rr bbbbbbbbbbbbb −++     ( )24  

Comparing the entries of the first row of this array with 

,...,,1 '
4

'
2 dd   and those of the second row with ,..., '

3
'
1 dd   

yields ( )23 . For example, for ,4=r  ( )23  becomes 

,'1
'
1 bd = ,'

4
'
3

'
2

'
2 bbbd ++= ( ),'

4
'
3

'
1

'
3 bbbd += ,'

4
'
2

'
4 bbd =             ( )25  

The necessary and sufficient condition for all the poles of 

( )14  to be strictly in the left-half plane  30  is 

       0,...,0 ''
1  rbb ( )0,...,0 ''

1  rdd     ( )26      

The problem is to minimize ( )22 subject to ( )23 and ( )26 . 

 

Application of Luus and Jaakola Algorithm 

 

The algorithm of Luus Jaakola (LJ) is developed for 

optimization purpose  31 . It is called LJ optimization 

method. This algorithm is found to be suitable for solving 

above stated problem. Although, the algorithm searches 

local minima, in the examples considered in this work, it has 

converged to improved approximants.  

 

 

 

 

Design of Controller  

 

Consider the control system  54 as shown in Fig.3.1. 

Given ( )sGn and ( )sH , the problem is to derive the transfer 

function of the controller ( )sC which yields the desired 

response of the closed loop system. 

A classical approach to the design of the controller ( )sC is to 

specify the desired (also called reference) closed loop 

transfer function ( )sT , equate it to the closed loop transfer 

function, and solve for the controller  54 . Thus  

 

Gn(s)

H(s)

R(s) Y(s)+

-

C(s)

 
 

Fig. 3.1. Control Configuration 

 

( ) ( ) ( )
( ) ( ) ( )sHsCsG

sCsG
sT

n

n

+
=

1
  ( )27  

On simplification for controller, ( )27  yields 

 

( ) ( )
( ) ( ) ( ) sHsTsG

sT
sC

n −
=

1
 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) sHNsTNsHDsTDsNG

sHDsDGsTN

n

n

−
=    ( )28  

 

Where TN(.) and TD(.) indicate numerator and denominator 

respectively. 

Now consider the closed loop system shown in Fig. 3.2. By 

approximating ( )sGn by a reduced order model transfer 

function ( )sGrk , Fig.3.3 is obtained. In other words, the 

system of Fig.3.2 is approximated by that of Fig.3.3, 

where ( )sH is assumed to be same in both these figures. 

Pertaining to these two systems, the following result was 

previously arrived at  55  

 

Gn(s)

H(s)

R(s) Y(s)+

-

 
.  

Fig. 3.2. A closed loop system 

 

Grk(s)

H(s)

R(s) Y(s)+

-

 
Fig. 3.3. A reduced order approximant of the system of Fig. 

3.2 
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Modified Krylov Subspace (Mk-S) Algorithm  

 

The proposed MK-S algorithm has been described as 

follows.  

Step 1.  Set the order of the reduced order model r  for the 

given thn order system )(sGn . Choose 1l  and 2l such that 

lll =+ 21  Markov parameters and 212 llr −−  time moments of 

the HOS and ROM match. 

Step 2. Find the reduced order ( thr order) model ( )sGr from 

( )8 . 

Step 3.  If )(sGr is stable then terminate the process 

otherwise go to next step. 

Step 4. Find the next stable higher Krylov reduced order 

model )(sGk , from Equation ( )8 ,where 

( ) )1...()2(1 −++= norrorrk   

Step 5. Obtain the thr order model )(sGrk from )(sGk using 

( ).14  

Step 6. Then the controller is designed (As per section  

 

Numerical Examples 

 

The step by step procedure to design of a controller has been 

explained in this section with the help of examples as 

presented below. 

Example 1: Consider the following stable th4 order system 

having transfer function  

( )
1001809718

725412

234

23

4
++++

+++
=

ssss

sss
sG   ( )29  

 

Derive a reduced order ( )2=r model of ( )29 . Using the 

method described in the above section. The second order 

approximant to ( )29 turns out to be 

( )
5.34235.37

84.24
223

++

+
=

ss

s
sG    ( )30  

 

Choose a reference model which satisfies the control 

specifications. In this example, a standard second order 

transfer function is chosen with damping ratio 7.0= and 

natural frequency sradn /5.1= . Thus  

( )
25.21.2

25.2
2 ++

=
ss

sT    ( )31  

 

Derive the reduced order controller from ( )28 as 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) sHNsTNsHDsTDsNG

sHDsDGsTN

sDC

sNC
sC

−
==

2

2

2

2
2   ( )32  

Here,  

 ( ) 25.2=sTN  

 ( ) 25.21.22 ++= sssTD  

 ( ) 84.242 += ssNG  

 ( ) 5.34235.372
2 ++= sssDG  

and ( ) ( ) 1== sHDsHN . Therefore, ( )sC2 is obtained as 

( )
sss

ss
sC

414.5494.26

625.7777875.8325.2
23

2

2
++

++
=   ( )33  

 

The transfer function, ( )sO , of the system (see Fig.3.1) with 

reduced order controller ( )sC2 takes the form 

 ( ) ( ) ( )
( ) ( ) ( )sHsGsC

sGsC
sO

2

2

1+
=  

 

( )

1095342.25320

1525.23309505188.1158005075.3937584.63894.44

558982.102235525.56176271875.38777875.11025.2
234567

2345

++

+++++

+++++
=

s

ssssss

sssss
sO

      ( )34  

the step responses of ( )31 and ( )34 are shown in Fig. 5.1. It is 

seen that the response of the system with reduced-order 

controller is satisfactory. Fig. 5.1 also depicts the responses 

of ( )29 and ( )30 . Clearly ( )30 is a good approximant (Krylov 

Routh Pade` approximant) to ( )29 . 

 
Fig. 5.1: Comparison of Step responses for original system 

G4(S) , ROM G23(s), T(s) and O(s) 

Example 2: Consider the following stable 6th order System 

having transfer function  

( )
60001310010060349157141

240077003610762702
23456

2345

6
++++++

+++++
=

ssssss

sssss
sG

  ( )35  

 

Derive a reduced order ( )2=r model of ( )35 .using the method 

described in the above section. The second order 

approximant to ( )35 turns out to be 

( )
249.1962.1

4997.0297.1
223

++

+
=

ss

s
sG    ( )36  

Choose a reference model which satisfies the control 

specifications. In this example, a standard second order 

transfer function is chosen with damping ratio 7.0= and 

natural frequency sradn /5.1= . Thus  

( )
25.21.2

25.2
2 ++

=
ss

sT    ( )37  

Derive the reduced order controller from ( )28 as 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) sHNsTNsHDsTDsNG

sHDsDGsTN

sDC

sNC
sC

−
==

2

2

2

2
2

      ( )38  
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Here,  

 ( ) 25.2=sTN  

 ( ) 25.21.22 ++= sssTD  

 ( ) 84.242 += ssNG  

 ( ) 5.34235.372
2 ++= sssDG  

and ( ) ( ) 1== sHDsHN . Therefore, ( )sC2 is obtained as 

( )
sss

ss
sC

04937.12234.3297.1

81025.24145.425.2
23

2

2
++

++
=  

   ( )39  

 
Fig. 5.2: Comparison of Step responses for original system 

G6(S), ROM G23(s), T(s) and O(s) 

 

The transfer function, ( )sO , of the system (see Fig.3.1) with 

reduced order controller ( )sC2 takes the form 

( ) ( ) ( )
( ) ( ) ( )sHsGsC

sGsC
sO

2

2

1+
=  

( )

8.6744945.385297995.826239577.9596752117.64764

03517.2692974157.657729577.8784004.56297.1

8.6744725.322336525.495367555.35402

0665.116831355.2029329.1665.4

234

56789

23

4567

+++++

++++

++++

+++

=

ssss

sssss

sss

ssss

sO

       ( )40  

the step responses of ( )37 and ( )40 are shown in Fig. 5.2. It is 

seen that the response of the system with reduced-order 

controller is satisfactory. Fig. 5.2 also depicts the responses 

of ( )35 and ( )36 . Clearly ( )36 is a good approximant (Krylov 

Routh Pade` approximant) to ( )35 . 

Conclusion 
 

In this work, a low order controller is designed using 

combination of Krylov and Routh Padé approximation 

method and termed as modified Krylov subspace method. 

The classical Krylov subspace method has the shortcoming 

of producing unstable reduced order models for a stable 

higher order system. In the proposed method, the stability is 

preserved in the reduced order model by making use of 

Routh Padé approximation technique. Once the HOS is 

reduced the controller is developed for this ROM and then 

finally implemented to HOS. The results corroborate the 

feasible and effective use of the designed controller using 

proposed method. 
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