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ABSTRACT  

The recurrence of the cancer growth can be prevented by the anti- tumor activity which is found to be very crucial in developing 

the treatment of the cancerous cells. In the present work, we include an immune response to derive the optimal control strategies. 

The focus is on assessing immune cell effects on tumor progression.  Applying optimal control theory, we produce continuous 

controls to a range of objectives and parameter choices. Applying Pontryagin’s Maximum Principle we provide a practical 

approach and look at factors that have a reflective influence on numerical convergence. Numerical simulations have been carried 

out with hypothetical values to show stability of the system. 
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Introduction 

Cancer cells are host cells that   multiply in an 

uncontrolled   and non-specific way that leads to 

the development of a tumor. The characteristic 

feature of cancer is its ability to invade and 

metastatize, which comprises of tissue disruptions, 

which further simulates the immune system. 

Tumor   cells are categorized by a wide number of 

genetic and epigenetic events leading to the 

appearance of specific antigens    called neo 

antigens, triggering anti tumoral mechanism  by 

the immune system [1,2]. All these observations 

led to the formation of the hypothesis that the 

immune system may eliminate tumors. 

The growth of cells and their function are 

regulated with the help of antigen specific agents 

called cytokines during a particular immune 

response. They bring about the autocrine and 

panacrine effects i.e., changing the cells that 

produce them and altering the cells near them. An 

important cytokine is Interleukin-2 which 

arbitrates cell proliferation, enhancing the  

 production of other cytokines, and increasing the 

function of  natural killer cells. This use of 

cytokines to treat cancer is generally done in 

combination with adoptive cellular  

Immunotherapy (ACI). In a treatment that 

includes ACI, T-cells are taken from cancer 

patients which are grown and activated in a 

manner that helps in  stimulating them to react to 

certain antigens. These activated T-cells  then 

immunologically reject  the tumor cells when  

infused into the patient by attacking the tumor 

cite. 

Progressive approaches used in other fields, 

specifically pest management, imply to the fact 

that complete elimination of an undesired species 

is not often possible. Similarly, in commonly 

found cancers (such as prostate, lung, breast, 

colorectal, pancreatic etc.), years of clinical 

observations have clearly confirmed that a cure is 

not possible with currently employed therapies. 

The goal of cancer treatment   for these cancers is 

to be shifted to its long term control which 

essentially turns the cancer into a chronic disease 

[3]. 

Optimization techniques can isolate values of the 

controller which decreases the objective over 

some fixed or varied time horizon of the model. 

The majority of past optimal control models of 

cancer therapy define the objective as minimizing 

total tumor volume following the standard goal of 

“treat to cure”. Swan and Vincent (1977), Swan 

(1980), and Swan (1988) provide the first 

applications of optimal control theory to treating 

cancer [4, 5, 6]. Optimal control theory has since 

been used to  investigate cytotoxic 

chemotherapies, cell cycle chemotherapies, 

radiotherapy, and immune therapies [7,8,9,10, 11, 

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23,24,25]. 
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The deterministic model 

In this section we  construct the spontaneous 

tumor regression and progression system using a 

prey–predator  system. The dynamical system can 

be described the following set of nonlinear 

ordinary differential  equations,  

( )1
dx x

rx xy ux t
dt k


 

= − − − 
   

( )
dy

yz dy xy ux t
dt

 = − + +
 

1
dz z

sz yz pz
dt g


 

= − − − 
   

Where, 

• x(t)  represents the densities of tumor cells 

• y(t) represents the densities of hunting 

predator cells 

• z(t) represents the densities of resting 

predator cells. 

We have assumed that the tumor cells are being 

destroyed at a rate proportional to the tumor cells 

densities according to the law of mass action. 

Next we also assume that the resting   predator 

cells are converted to the hunting cells either by 

direct contact with them or by contact with a fast 

diffusing  substance produced by hunting cells. 

Here, 

r is the growth rate of the tumor cells,  

k is the maximum  carrying capacity of tumor 

cells, 

β is the conversion rate of resting cell to hunting 

cell,  

d is the natural death of hunting  cell, 

α is the loss of tumor cells due to interaction with 

the hunting predator cells. 

s is the growth rate of resting predator cell,  

g is the maximum carrying capacity of resting 

cells, 

p is the natural death rate of resting cell.  

u is the control variable  

 

Stability analysis: 

Cancer self-remission and tumor system have to 

be analyzed with the initial positivity conditions   

x(0) > 0,  y(0) > 0, z(0) > 0.  

To study the stability of the steady states, we 

linearize system around the steady states and find 

the Jacobian matrices. Based on the theory of 

differential equations, the stability of the steady 

states is investigated, where det (Jacobian J) = 0 . 

If all the eigen values of the Jacobian matrix have 

negative real parts, then the steady state is locally 

asymptotically stable. On the other hand, if at 

least one of the eigen values has positive real part, 

then the steady state is unstable.  

In the absence of control variable, i.e., u(t) = 0  in 

model (1) , the modified model has then two types 

of steady states:  

(i) Tumour-free steady state, where the tumour 

cells population is zero, while the normal cells 

survive. 

E0 (0,y*,z*)  =  (0, d/β, g-p/s). 

(ii) Persistent-tumour steady state(s) 

E1 (x*,y*,z*) 

The Jacobian matrix for system (1) around the 

steady state E1 is  given by  

2
0

0

2
0

rx
r y

k

x z d x y

sz
y s p y

g

 

    

  




   


 

− − −

− + − =

− − − − −

 

The characteristic equation is given by
3 2

1 2 3 0A A A  + + + =
 

In this case, the steady state E1 is locally 

asymptotically stable if and only if all the roots  of 

the characteristic equation  have negative real 

parts which depends on the numerical values of     

parameters which can be shown in  numerical 

exploration.  

This is based on holding the following Routh–

Hurwitz conditions. 

A1>  0,   A3> 0   and A1A2-A3>0. Hence the 

persistent tumor state is locally asymptotically 

stable,  where the equilibrium points at persistent 

tumor state are given as 
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( )k r y
x

r
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
−
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z

s

 


− −

=
 

( ) ( )
2 1

g s p s k d
y

g sk r



 



−

− + −
=

+  

Optimal control problem 

The formulation as an optimal control problem 

allows us to: 

(i) investigate the dynamical system of interacting 

cell populations being affected by the (immune) 

treatments;  

(ii) Optimize the application of the control such 

that the quantity of the treatments is optimized; 

and 

(iii) Minimize the tumour size at some end-time.  

The objective function is defined as follows:  

( ) 2

0

1

2

ft

J u x y z Au dt
 

= + + + 
 


 

With the constraint equation 

( ) : 0 1, 0, fU u u t t t =       

Then in order to get the necessary condition of 

optimal control , Pomtryagin’s Principle is 

applied. The Hamiltonian function of this optimal 

control is 

( ) ( )2

1

1
, , , , 1

2

x
H x y z u x Au rx xy u t

k
  

  
= + + − − +  

  

( )( )2 yz dy xy u t  + − − +

3 1
z

sz yz pz
g

 
  

+ − − −  
    

From the Hamiltonian function we get, 

(i) State Equations 

 

( )
2

dy H
yz dy xy ux t

dt
 




= = − + +


 

 

1
dz z

sz yz pz
dt g


 

= − − − 
   

with the initial conditions 

( ) ( ) ( )0 0 00 , 0 , 0x x y y z z= = =
 

The co-existence state equation is 

1 1
1 1 2

2
1

d rxH
r y y

dt x k

 
   


= = − − + + +
  

2
1 2 2 2 3

d H
x z d x z

dt y


       


= = − + + +
  

3 3
2 3 3 3

2d szH
y y y p

dt z g

 
     


= = − − + + +
  

With transversality condition 

        

 

Stationary condition  

0,
H

u


=

       

1u
A

 = −
 

Since    
( )0 1u t 

 , we get 

1min max 0,u
A

   
=   

    

Numerical Results: 

This section aims to present the numerical 

solution of the controlled nonlinear cancer self-

remission and tumor system to explore the 

possibility of the optimal control of this system. 

We carry out numerical simulations to 

demonstrate our theoretical results and the 

complex dynamics of the system (1) for a set of 

d=0.5;g=0.4;k=13;p=1.8;r=6.5;s=0.9;u=2.5; 

 

Figure1(a) 

( )
1

1
dx H x

rx xy u t
dt k
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Figure1(b) 

Figure 1(a) The phase portrait  of the system 

approaching stability  and  Figure 1(b)    shows 

the stable variations for the population under 

study.  

Conclusion 

• It is well known that the cancer is one of the 

greatest killers in the world and the control of 

tumor growth requires great attention.  

•  This paper is concerned with the problem of 

optimal control of unstable steady-states of 

cancer self-remission and tumor system using a 

nonlinear control approach. The positive 

steady-states are investigated. The stability of 

the 

• steady-states of this system are studied using 

the linear stability approach. The aim of the 

optimal control is to minimize the number of 

tumor cells. 

• Pontryagin’s Principle was applied to the 

problem to obtain the optimal condition. 

Numerical simulations show that with   

immune response  there is effective control 

inthe growth of tumors.  
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