Optimizing Vehicle Routing Problem with Nearest Neighbour Method and Saving Matrix on PT XYZ

Eva Qistiana Amanatillah*, Egi Riswanda, Galuh Halintar, Rifqi Firozan, Yani Iriani

Department of Industrial Engineering, Widyatama University Bandung, West Java, Indonesia *eva.qistiana@widayatama.ac.id

ABSTRACT

Transportation is part of supply chains that could contribute up to 40% of total logistics costs. Therefore, the company should have a proper transportation system. PT XYZ is one of the pharmaceutical industries that offer/serve distribution and logistics services in health and other sectors in Indonesia. The recent problem at PT XYZ lingers on the Vehicle Routing Problem (VRP) along with its limitation. PT XYZ often finds some difficulties when dealing with distribution process, specifically the frequent delay in delivering products to their customers due to the inaccuracy of route configuration, and this exact case causes an increased transportation cost. In November 2020, PT XYZ could spend an average transportation cost for Rp. 1.902.022 daily with eight distribution routes. This happened since the company's ineffectiveness in maximizing the route and the vehicle capacity. The aim of this study is to determine distribution route and proper vehicle capacity at PT XYZ and to calculate the total cost of transportation by using nearest neighbor method and saving matrix. The nearest neighbor matrix is a simple method using the nearest neighborhood concept, while the saving matrix method is one of the methods that uses matrix table economical distance and restriction regarding cargo capacity. Based on the result processed by using nearest neighbor method and saving matrix, the most appropriate method that resulted optimal route with the distance covered and maximum capacity was saving matrix method. The calculation that used nearest neighbor method resulted in six routes with total distance at 168 km, whilst the saving matrix yielded five routes with the total distance at 186 km. The calculation result of the total cost regarding distribution activities for the nearest neighbor was Rp. 1.396.145, whilst the saving matrix method was Rp. 1.181.601. The cost comprised of the sum of fixed costs with variable costs and the total distance that had been calculated by both methods. By using the nearest neighbor method and saving matrix, the company could save up to 27% and 38% respectively for each method.

Keywords

Distribution, route, vehicle routing problem, nearest neighbor method, saving matrix

Introduction

PT XYZ is a pharmaceutical company that provides distribution and logistics services in the health sector and other fields in Indonesia. In its activities, this company has problems with transportation. Transportation activities at PT XYZ are very much needed to distribute products. Products sent to distributors and retailers have many alternative choices. In November 2020, PT XYZ can spend an average of Rp. 1,902,022 per day. This is certainly a problem because companies will experience swelling in their transportation costs. The objective of solving transportation problems is to achieve maximum profit by minimizing total production costs.

Transportation in companies must have a strategy and planning. Calculations in transportation planning require data in the form of the distance to the destination along with the price. Strategic planning in transportation requires mathematical calculations which can then be searched for routes with optimal distances and costs. This problem is also known as the Vehicle Routing Problem (VRP).

One solution to the problem in the vehicle routing problem (VPR) is the Algorithm Nearest Neighbour. The method Nearest Neighbour starts with moving the vehicle from the one depot to the closest depot without exceeding the vehicle capacity, if it exceeds the vehicle capacity the vehicle will go to the initial depot and then start visiting the depot that has not been visited until this algorithm can be stopped (Mukhsinin et al., 2013). The purpose of using the Nearest Neighbour method is to solve the complex so that it can be overcome. According to Mohammed et al. (2017), the Nearest Neighbour method is stochastic, making this method better in making decisions.

Apart from the Nearest Neighbour method, the saving matrix method is also a solution to problems in transportation. For the use of the saving matrix method, the distribution line is determined based on vehicle capacity (Indrawati et al., 2016). Distribution problems can be solved by using the saving matrix method, with this method the company can also save the cost of sending products to customers directly (Pattiasina et al., 2018).

This research is oriented towards solving the routing problem in PT. vehicle XYZ. Optimization in solving the problem of vehicle problems is needed so that the transportation and distribution activities of the PT XYZ company can minimize the total distribution costs in order to achieve maximum profits. This study is intended to compare the calculations to determine the closest route using the methods Nearest Neighbour and Saving Matrix.

Literature Review

Vehicle Routing Problem

Vehicle Routing Problem (VRP) is one of the most important problems in the logistics system, the Vehicle Routing Problem covers problems related to vehicle routes in making deliveries from one depot to a number of distribution centers. Zirour (2008) defines VRP as a problem of determining the optimal route of a vehicle in the distribution of goods or services from one or more depots to a number of agents in different locations.

According to Caceres-Cruz et al. (2014), there are four general objectives of VRP which are as follows:

- a. Minimizing transportation costs, related to distance and fixed costs associated with vehicles.
- b. Minimizing the number of vehicles needed to distribute products.
- c. Minimizing penalties due to unsatisfactory service from agents.

Nearest Neighbour Method

The method Nearest Neighbour is a method used for route problem solving, problem solving is done by starting the starting point then searching for the nearest point (Hutasoit et al., 2014). According to Madona and Irmansyah (2013) explained that the method Nearest Neighbour starts with selecting a path or route that has the minimum distance value each through the area, then selecting the next area considering that the area has not been visited and has the minimum value or distance.

Saving Matrix Method

Matrix is one of the methods used to solve transportation problems with the aim of minimizing costs. The transportation problem, which is the vehicle routing problem (VRP), is in the form of determining the distribution route of a product from one depot to the depot by considering the maximum capacity of the vehicle used (Indrawati et al., 2016).

In addition to the Nearest Neighbour method, the saving matrix method is included as a heuristic method for determining the distribution route of a product (Sutoni & Apipudin, 2019). The purpose of implementing the saving matrix method is to allocate goods to delivery areas based on carrying capacity on the basis of the largest savings (Ikfan & Masudin, 2013).

The steps that must be done using the Saving Method are as follows:

1) Start with the initial solution with each customer being visited by one vehicle route.

2) Calculate the savings (savings) for each pair of customers $i \in C$ and $\in C \in C$ with the formula:

$$Sij = C0i + Cj0 - Cij$$

3) Sort the savings in a list descending (or from largest to smallest).

4) Find a feasible arc (*i*, yang) in the list of savings that satisfies:

a. Customer i and customer j are located on different routes.

b. Customer i and customer j are the first or last customers visited on the route concerned.

c. The total quantity of the route which includes customer i and customer j does not exceed the loading capacity of vehicle K.

d. Update the solution by adding arcs (i, j) and deleting arcs (0, i) and (j, 0).

5) Repeat step 2 so that neither bow meets the three conditions in step 2 or there is a final saving.

Methodology

This study uses a quantitative approach. The data obtained is divided into two, namely primary and secondary data. Primary data in this study were obtained through interviews with resource persons (company employees), data collected in the form of data regarding company profiles, customer data, vehicle types, vehicle capacity and number of vehicles used to distribute products to each distribution center and distance data from depot to each delivery location.

Secondary data in this study were obtained from other written data relating to research such as data on the number of product shipments to each distribution center every day, literature and other document data.

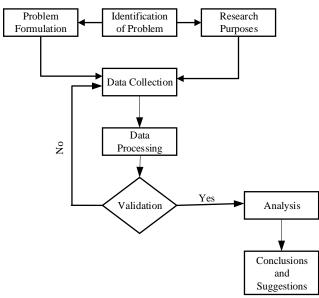


Figure 1. Flowchart research

1. Problem Identification

The selection of the research location used was PT XYZ, while the problems identified were the ineffective route of the vehicles used in the transportation process which resulted in significant expenditure.

2. Problem Formulation

After conducting a field study, the next step is to formulate the problem. The formulation of the problem of this study is the occurrence of large expenses due to an ineffective distribution system. 3. Research

Objectives The research objective is the objective of conducting a study, in this case it is to determine the root of the problem of the vehicle routing problem (VPR), apply the use of the Nearest Neighbour method and the saving matrix method, and analyse the comparison of the two methods.

4. Literature Study

A method used to collect data or sources related to the topic raised in a study. This research literature study is obtained from various sources such as journals, books and the internet.

5. Data Collection

The next stage is data collection. At this stage the authors collect the data needed to solve this problem, namely data in the form of area names, distances, and other matters related to the distribution of goods at PT XYZ.

6. Data Processing Data

Processing data using the Nearest Neighbour method and the Saving Matrix Method.

7. Analysis

After processing the data, the author will analyse the results of the resulting data processing. Analysing is important for the continuation of the research that has been done by the author, the data that is generated in processing then the data will be checked whether the data is valid or not.

8. Conclusions and Suggestions

The final step in the research is the conclusions and suggestions. Both of these are done after the researcher conducts analysis and interpretation, then the researcher makes general conclusions (generalizations).

Results and Discussion

Data collected is related to the distribution of products from the depot to each DC, consisting of several data including data on distribution systems, distribution area data, vehicle capacity, address *distribution center*, demand data, and variable cost data. transportation.

List of Distribution Center

Data collected by the author is in the form of location data distribution center PT XYZ. Table 1 is the data for the name of the area Distribution Center PT XYZ and Figure 2 is a map of the area distribution center that has been marked by the author, namely:

Table 1. Name of distribution center PT XYZ

CODE	DISTRIBUTION CENTER					
1	CENGKARENG					
2	GROGOL					
3	PETAMBURAN					
4	TAMAN SARI					
5	KEBON JERUK					
6	KALIDERES					
7	PALMERAH					
8	KEMBANGAN					
9	JOGLO					
10	MERUYA					
11	SRENGSENG					
12	KEMANGGISAN					
13	KOTA BAMBU					
14	KEDOYA					
15	GLODOK					
16	SEMANAN					
17	JEMBATAN BESI					
18	KALI ANYAR					
19	KAPUK					
20	RAWA BUAYA					
21	TANJUNG DUREN					

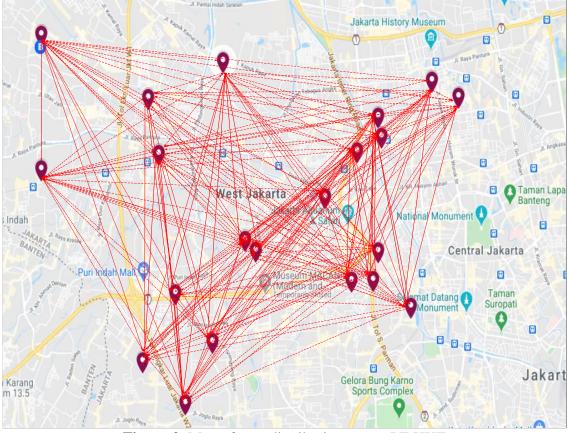


Figure 2. Map of area distribution center PT XYZ

Distance between Distribution Centers

Table 2 and 3 are distance data between distribution centers PT XYZ based on distance

measurements that have been made using application Google Maps, namely:

Table 2. Distance between distribution centers

PSYCHOLOGY AND EDUCATION (2021) ISSN: 0033-3077 Volume: 58(3): Pages: 586-594 Article Received: 13th September, 2020; Article Revised: 25th January, 2021; Article Accepted: 12th February, 2021

	FROM		то	DISTANC E (KM)	F	ROM		то	DISTANC E (KM)
	1	2	GROGOL	10,5		1	1	CENGKARENG	14,9
		3	PETAMBURAN	19,1			2	GROGOL	4,2
		4	TAMAN SARI KEBON JERUK	16,9 11,8			3 4	PETAMBURAN TAMAN SARI	8,8 9,8
		6	KALIDERES	7,6			5	KEBON JERUK	5,7
		7	PALMERAH KEMBANGAN	11,3 9,7			6	KALIDERES KEMBANGAN	17,1
		9	JOGLO	11,5			9	JOGLO	21,8
1	CENGKAR	10	MERAYU SRENGSENG	10,4 11,4	7	PALMER	10	MERAYU SRENGSENG	8,8 11,7
· ·	ENG	12	KEMANGGISAN	12,8	ĺ ĺ	AH	12	KEMANGGISAN	3,3
		13	KOTA BAMBU KEDOYA	12,9 10,1			13 14	KOTA BAMBU KEDOYA	1,7 13,3
		15 16	GLODOK SEMANAN	14,3 7,6			15 16	GLODOK SEMANAN	13,8 22,7
		17	JEMBATAN BESI	9,8			17	JEMBATAN BESI	15
		18 19	KALI ANYAR KAPUK	11,3 5,8			18	KALI AN YAR KAPUK	15,2
		20	RAWA BUAYA	3,9			20	RAWA BUAYA	19,6
		21	TANJUNG DUREN CENGKARENG	9,7 19,1			21	TANJUNG DUREN CENGKARENG	10,8 9,7
		3	PETAMBURAN	8,2			2	GROGOL	10,8
		4 5	TAMAN SARI KEBON JERUK	7,3 8,6			4	PETAMBURAN TAMAN SARI	11,7 15,2
		6	KALIDERES PALMERAH	22,7 4,2			5	KEBON JERUK KALIDERES	5,2 11,8
		8	KEMBANGAN	11,4			7	PALMERAH	14
		9 10	JOGLO MERAYU	14,8 13,6			9 10	JOGLO MERAYU	4,6
2	GROGOL	11	SRENGSENG	10,4	8	KEMBA	11	SRENGSENG	3,4
		12	KEMANGGISAN KOTA BAMBU	6,8 5,9		NGAN	12	KEMANGGISAN KOTA BAMBU	8,4 10,1
		14 15	KEDOYA GLODOK	5,8 7,1			14 15	KEDOYA GLODOK	4,8 15,7
		15	SEMANAN	11			15	SEMANAN	9,4
		17 18	JEMBATAN BESI KALI ANYAR	2,7 3,8			17 18	JEMBATAN BESI KALI ANYAR	13,4 14,4
		19	KAPUK	5,7			19	KAPUK	17,5
		20 21	RAWA BUAYA TANJUNG DUREN	7 2,6			20 21	RAWA BUAYA TANJUNG DUREN	5,2 8
		1	CENGKARENG	19,1			1	CENGKARENG	11,5
		2 4	GROGOL TAMAN SARI	8,2 7,2			2 3	GROGOL PETAMBURAN	15,3 12,9
		5	KEBON JERUK KALIDERES	6,1 18,3			4	TAMAN SARI KEBON JERUK	17,6 7,2
		7	PALMERAH	8,8		JOGLO	6	KALIDERES	12,2
		8	KEMBANGAN JOGLO	11,7 12,9			7 8	PALMERAH KEMBANGAN	21,8 4,6
	PETAMBU	10	MERAYU	3,6			10	MERAYU	6,2
3	RAN	12	SRENGSENG KEMANGGISAN	10,5 2,9	9		11 12	SRENGSENG KEMANGGISAN	7,3 13,9
		13	KOTA BAMBU KEDOYA	3,9 9,1			13	KOTA BAMBU KEDOYA	16,4
		15 16	GLODOK SEMANAN	7,9			15 16	GLODOK SEMANAN	19,1 15,7
		17	JEMBATAN BESI	9,6			10	JEMBATAN BESI	13,7
		18 19	KALI ANYAR KAPUK	9,5 13			18 19	KALI AN YAR KAPUK	18,2 17,2
		20	RAWA BUAYA	14,4			20	RAWA BUAYA	13,6
		21	TANJUNG DUREN CENGKARENG	5,6 16,9			21	TANJUNG DUREN CENGKARENG	14,7
		2	GROGOL PETAMBURAN	7,3			2	GROGOL PETAMBURAN	10,4 11,9
		5	KEBON JERUK	14			4	TAMAN SARI	14,8
		6 7	KALIDERES PALMERAH	22 9,8			5	KEBON JERUK KALIDERES	5,9 12,5
		8	KEMBANGAN JOGLO	16,6 19			7 8	PALMERAH KEMBANGAN	8,8 3,2
		10	MERAYU	6,7			9	JOGLO	6,2
4	TAMAN SARI	11 12	SRENGSENG KEMANGGISAN	15,3 8,9	10	MERUYA	11 12	SRENGSENG KEMANGGISAN	4,1 9,6
		13 14	KOTA BAMBU KEDOYA	7,6 12			13 14	KOTA BAMBU KEDOYA	10,9 5,7
		15	GLODOK	2,1			15	GLODOK	21,5
		16 17	SEMANAN JEMBATAN BESI	16,5 6,6			16 17	SEMANAN JEMBATAN BESI	11,4 19,5
		18	KALI ANYAR	6,6			18	KALI ANYAR	20,6
		19 20	KAPUK RAWA BUAYA	10,8 14,2			19 20	KAPUK RAWA BUAYA	12,1
		21	TANJUNG DUREN	8,5			21	TANJUNG DUREN	8,8
		2	CENGKARENG GROGOL	11,6 8			2	CENGKARENG GROGOL	11,4 9,5
		3	PETAMBURAN TAMAN SARI	6,1 12,5			3	PETAMBURAN TAMAN SARI	10,5
		6	KALIDERES	14,2			5	KEBON JERUK	5,1
		7 8	PALMERAH KEMBANGAN	5,7 5,2			6 7	KALIDERES PALMERAH	13,5 11,7
		9	JOGLO	8			8	KEMBANGAN	3,4
5	KEBON	10	MERAYU SRENGSENG	5,1	11	SRENGS	10	JOGLO MERAYU	4,1
´	JERUK	12	KEMANGGISAN KOTA BAMBU	6 7,2		ENG	12 13	KEMANGGISAN KOTA BAMBU	7,6 8,7
		14	KEDOYA	1,1			14	KEDOYA	4,2
		15 16	GLODOK SEMANAN	12,8 12,5			15 16	GLODOK SEMANAN	14,4 12,6
		17	JEMBATAN BESI	9,9			17	JEMBATAN BESI	10,3
		18 19	KALI ANYAR KAPUK	12,2 9,1			18 19	KALI AN YAR KAPUK	11,4 10,3
		20	RAWA BUAYA TANJUNG DUREN	8,4			20	RAWA BUAYA TANJUNG DUREN	8,4
		1	CENGKARENG	7,6			1	CENGKARENG	15,1
		2	GROGOL PETAMBURAN	22,7 21,6			2	GROGOL PETAMBURAN	7,1
		4	TAMAN SARI	22			4	TAMAN SARI	8,9
		5	KEBON JERUK PALMERAH	14,2 17,1			5	KEBON JERUK KALIDERES	3,2 17,4
		8	KEMBANGAN JOGLO	11,8 12,2			7 8	PALMERAH KEMBANGAN	3,3 8,4
		10	MERAYU	12,5			9	JOGLO	13,9
			SRENGSENG	13,5 17,4	12	KEMAN GGISAN	10	MERAYU SRENGSENG	9,6 7,6
6	KALIDERE S	11 12	KEMANGGISAN			GGISAN	13		
6		12 13	KOTA BAMBU	16,4				KOTA BAMBU	5,2
6		12 13 14 15	KOTA BAMBU KEDOYA GLODOK	16,4 11,5 17,6			14 15	KEDOYA GLODOK	6,3 10,9
6		12 13 14 15 16	KOTA BAMBU KEDOYA GLODOK SEMANAN	16,4 11,5			14	KEDOYA GLODOK SEMANAN	6,3
6		12 13 14 15 16 17 18	KOTA BAMBU KEDOYA GLODOK SEMANAN JEMBATAN BESI KALI ANYAR	16,4 11,5 17,6 4,6 13,3 14,4			14 15 16 17 18	KEDOYA GLODOK SEMANAN JEMBATAN BESI KALI ANYAR	6,3 10,9 15,5 7,4 7,8
6		12 13 14 15 16 17	KOTA BAMBU KEDOYA GLODOK SEMANAN JEMBATAN BESI	16,4 11,5 17,6 4,6 13,3			14 15 16 17	KEDOYA GLODOK SEMANAN JEMBATAN BESI	6,3 10,9 15,5 7,4

Table 3. Distance between distribution centerspart 2

				DISTANC					DISTANC	
1	FROM		ТО	E(KM)	F	ROM		то	E(KM)	
		1 2	CENGKARENG GROGOL	16,7 5,9			1	CENGKARENG GROGOL	11,3 2,9	
		3	PETAMBURAN	3,9			3	PETAMBURAN	9	
		4	TAMAN SARI	7,6			4	TAMAN SARI	6,6	
		5	KEBON JERUK KALIDERES	7,2			5	KEBON JERUK KALIDERES	12,2 14,4	
		7	PALMERAH	1,7			7	PALMERAH	15,2	
	13 KOTA BAMBU	8	KEMBANGAN JOGLO	10,1 16,4			8	KEMBANGAN JOGLO	14,4 18,2	
12		10	MERAYU	10,4	18	KALI	10	MERAYU	20,6	
15		11	SRENGSENG	8,7	18	ANYAR	11	SRENGSENG	11,4	
		12	KEMANGGISAN KEDOYA	5,2 7,7			12	KEMANGGISAN KOTA BAMBU	7,8 6,5	
		15	GLODOK	7,3			14	KEDOYA	12,1	
		16	SEMANAN	14,2			15	GLODOK	3,2	
		17 18	JEMBATAN BESI KALI ANYAR	5,4 6,5			16 17	SEMANAN JEMBATAN BESI	14,5 1,1	
		19	KAPUK	10,5			19	KAPUK	8,2	
		20	RAWA BUAYA TANJUNG DUREN	10,1 3,1			20 21	RAWA BUAYA TANJUNG DUREN	4,1	
		1	CENGKARENG	10,1			1	CENGKARENG	4,3	
		2	GROGOL	6,6			2	GROGOL	6,2	
		3	PETAMBURAN TAMAN SARI	9,1 13,8			3	PETAMBURAN TAMAN SARI	14,3 10,8	
		5	KEBON JERUK	1,9			5	KEBON JERUK	9,1	
		6	KALIDERES PALMERAH	11,5 13,3			6	KALIDERES	9,3 19	
		8	KEMBANGAN	4,8			8	PALMERAH KEMBANGAN	17,5	
		9	JOGLO	10,4			9	JOGLO	17,2	
14	KEDOYA	10	MERAYU SRENGSENG	5,7 4,2	19	KAPUK	10	MERAYU SRENGSENG	12,1 10,3	
		12	KEMANGGISAN	6,3			12	KEMANGGISAN	12	
		13	KOTA BAMBU	7,7			13 14	KOTA BAMBU	10,5	
		15	GLODOK SEMANAN	12,5			14	KEDOYA GLODOK	9,2	
		17	JEMBATAN BESI	11,1			16	SEMANAN	9,4	
		18 19	KALI ANYAR KAPUK	12,1 7,9			17	JEMBATAN BESI KALI ANYAR	6,1 8,2	
		20	RAWA BUAYA	6,6			20	RAWA BUAYA	7,2	
		21	TANJUNG DUREN	4,5			21	TANJUNG DUREN	7,4	
		1 2	CENGKARENG GROGOL	14,5 7,2			2	CENGKARENG GROGOL	4,7 8,2	
		3	PETAMBURAN	7,9			3	PETAMBURAN	12,6	
		4	TAMAN SARI	2,1			4	TAMAN SARI	14,2	
		5	KEBON JERUK KALIDERES	12,8 17,6			5	KEBON JERUK KALIDERES	8,4 6,2	
		7	PALMERAH	13,8			7	PALMERAH	19,6	
		8	KEMBANGAN JOGLO	15,7 19,1			8 9	KEMBANGAN JOGLO	5,2 13,6	
15	GLODOK	10	MERAYU	21,5	20	RAWA	10	MERAYU	8	
15	GLODOK	11	SRENGSENG	14,4	20	BUAYA	11	SRENGSENG	8,4	
		12	KEMANGGISAN KOTA BAMBU	10,9 7,3			12	KEMANGGISAN KOTA BAMBU	10,5	
		14	KEDOYA	12,5			14	KEDOYA	6,6	
		16 17	SEMANAN JEMBATAN BESI	14,9 5,3			15 16	GLODOK SEMANAN	10,8	
		18	KALI ANYAR	3,2			17	JEMBATAN BESI	10,5	
		19	KAPUK	9,2				18	KALI ANYAR	11
		20	RAWA BUAYA TANJUNG DUREN	10,8			19 21	KAPUK TANJUNG DUREN	7,2	
		1	CENGKARENG	7,6			1	CENGKARENG	9,4	
		2	GROGOL PETAMBURAN	11,8 16,7			2	GROGOL PETAMBURAN	2,6 5,6	
		4	TAMAN SARI	16,5			4	TAMAN SARI	8,5	
		5	KEBON JERUK	12,5			5	KEBON JERUK	5,1	
		6	KALIDERES PALMERAH	4,6 22,7			6	KALIDERES PALMERAH	12,6 10,8	
		8	KEMBANGAN	9,4			8	KEMBANGAN	8	
	SEMANA	9 10	JOGLO	15,7 11,4		TANJUN	9 10	JOGLO	14,7 8,8	
16	N	10	MERAYU SRENGSENG	11,4	21	G DUREN	10	MERAYU SRENGSENG	8,8 7,9	
		12	KEMANGGISAN	15,5		DOKEN	12	KEMANGGISAN	5,1	
		13	KOTA BAMBU KEDOYA	14,2 12,3			13	KOTA BAMBU KEDOYA	3,1 4,5	
		15	GLODOK	14,9			15	GLODOK	7,1	
		17	JEMBATAN BESI KALI ANYAR	13,4 14,5			16 17	SEMANAN JEMBATAN BESI	12,8 3,5	
		19	KAPUK	9,4			18	KALI ANYAR	4,1	
		20	RAWA BUAYA	5			19	KAPUK	7,4	
		21	TANJUNG DUREN CENGKARENG	12,8 16,6			20	RAWA BUAYA	9,8	
		2	GROGOL	2,7						
		3	PETAMBURAN TAMAN SARI	8,6						
		5	KEBON JERUK	6,6 8,7						
		6	KALIDERES	13,3						
		7 8	PALMERAH KEMBANGAN	15 13,4	-					
		9	JOGLO	17,1						
17	JEMBATA N BESI	10	MERAYU	19,5						
	13 01:01	11	SRENGSENG KEMANGGISAN	10,3 7,4						
		13	KOTA BAMBU	5,4	l					
		14 15	KEDOYA GLODOK	11,1 5,3						
		15	SEMANAN	3,5 13,4						
		18	KALI ANYAR	1,1	ļ					
		19 20	KAPUK RAWA BUAYA	6,1 10,5						
		21	TANJUNG DUREN	3,5	l					

Characteristics of Products Distributed

Products distributed by PT XYZ are medicines in tablet form. The following product details are obtained, namely:

One sheet: 4 items One carton: 30 kg, 64 boxes One box: 25 sheets, 200 grams

Transportation Costs

Delivery of goods certainly requires costs in the form of transportation costs. Transportation costs consist of fixed costs and variable costs.

Fixed Cost

Costs Fixed costs are costs incurred by the company in a constant state or generally do not change even though there is an increase or decrease in the number of goods or services produced. In this study, which includes fixed costs, namely the cost for the vehicle driver.

For each delivery, each vehicle truck is delivered by the driver. Daily wages and overtime pay for drivers are included in the total fixed costs which are included in distribution costs in this study. The overtime pay applies to a multiple of two hours, if it is less than that time it is not considered.

Daily Wage: Rp. 172,000 Overtime pay: Rp. 49.711

Variable Cost

In this study, the variable cost of transportation is calculated from the cost of fuel used by the truck to distribute to the distribution center, namely:

Type of vehicle: Mitsubishi Colt Diesel FE71 Capacity: 2.3 tons or 2300 grams. Fuel Price: Rp. 9400 / liter Average Fuel Consumption: 24 liters / day Cost per km: Rp. 391,67

Nearest Neighbour method

This following are steps for the method Nearest Neighbour.

- a. Determine the Distributor Center. PT XYZ distributor center is located in Cengkareng City, in its completion Cengkareng City is marked with number 1.
- b. After the distribution center is known, the next process is to look at the distribution center which has the shortest distance. Every time you reach a distribution center, this algorithm will choose the distribution center next that has not been visited and has the minimum distance after that. Table 4 is the optimal route that the author has obtained using the method Nearest Neighbour, namely:

Table 4. Optimal route of distribution center PT
XYZ with Nearest Neighbour method

NO.	ROUTE	VEHICLE CAPACITY (KG)	DISTANCE (KM)
1	1,20,16,6,1	180	21,1
2	1,19,1	2300	10,1
3	1,8,10,11,14,5,1	2040	34,7
4	1,21,2,17,18,15,4,3,12,17,1	2190	49,7
5	1,9,1	540	23
6	1,13,1	2300	29,6
	TOTAL	9550	168,2

Based on Table 4, the optimal route for product distribution at PT XYZ is divided into five routes, with a total distance of 168.2 km.

Next is calculating the total cost. The total cost for this distribution activity consists of the sum of fixed costs with variable costs. The total distance calculated by *Nearest Neighbour* method will then be multiplied by the variable cost of transportation. The assumption used by the author is that each route has a different car and all operating vehicles have overtime pay.

= (168.2 x 391.67) + (6 x 221,711) = IDR. 1,330,266 + Rp. 65,878.89 = Rp. 1.396.145

Saving Matrix Method

Saving matrix

Distance between distribution center obtained in point 4.2 is then processed by calculating the largest savings matrix using the formula as described in point 2.3. Table 5 is the savings matrix that the author has calculated, namely:

Table 5. Savings Matrix

	FROM		SAVING MATRIX																				
	FROM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
CODE	DISTRIBUTION CENTER	CENGKA RENG	GROG OL	PETAMBU RAN	TAMA N SARI	KEBO N JERUK	KALID ERES	PALME RAH	KEMB ANGA N	JOGL O	MER UYA	SREN GSEN G	ANG	KOT A BAM	KED OYA	GLOD OK	SEM ANA N	JEM BAT AN		KAPU K	А	TANJ UNG DUR	DEMA ND
1	CENGKARENG																						
2	GROGOL			21,4	18	14,1	-4,6	21,2	9,4	6,7	11	12,4	18,5	21,3	14	17,8	6,3	24,4	18,9	8,6	7	17,3	30
3	PETAMBURAN				26,7	24,6	5,1	25,2	17,1	17,7	18,1	20	27,1	31,9	20,1	25,7	10	27,1	21,4	9,1	11,2	22,9	720
4	TAMAN SARI					13,9	0,4	19,9	9,3	8,7	10,9	12,3	21	23,9	11,1	27,2	5,9	24,8	19,5	8,3	5,3	15,7	120
5	KEBON JERUK						5	20,8	16,1	15,9	16,6	17,9	23,5	21,1	19,8	13,3	6,7	19,5	10,7	6,8	7,9	15,9	60
6	KALIDERES							5,4	5,5	6,9	6	5,5	5,3	7,9	6,2	4,5	10,6	10,9	4,5	2,6	6,1	4,4	60
7	PALMERAH								10,6	4,6	17	14,6	26,7	29,9	11,7	15,6	-0,2	16,5	11	0,2	0	13,5	390
8	KEMBANGAN									16,6	17,4	17,7	16,4	16,3	15	8,5	7,9	12,9	6,6	-3,5	9,2	11,1	480
9	JOGLO										16,2	15,6	12,7	11,8	11,2	6,9	3,4	11	4,6	-1,4	2,6	6,2	540
10	MERUYA											18,2	16,4	16,7	15,3	3,9	7,1	8	1,6	3,1	7,6	11,5	30
11	SRENGSENG												18,9	19,4	17,3	11,5	6,4	17,7	11,3	5,4	7,7	12,9	210
12	KEMANGGISAN													26,6	18,9	18,7	7,2	24,3	18,6	7,4	9,3	19,4	30
13	KOTA BAMBU														19,1	23,9	10,1	27,9	21,5	10,5	11,3	23	2580
14	KEDOYA															12,1	5,4	15,6	9,3	6,5	8,2	15	1260
15	GLODOK																7,2	25,8	22,6	9,6	8,4	16,8	120
16	SEMANAN																	10,8	4,4	2,5	7,3	4,2	60
17	JEMBATAN BESI																		26,8	14,8	10,8	22,5	60
18	KALI ANYAR																			7,4	5	16,6	30
19	KAPUK																				1,8	6,3	5940
20	RAWA BUAYA																					4,3	60
21	FANJUNG DUREN	1																					690

Iteration

After obtaining the savings matrix table, the next step is to search for the best route by iterating based on the order of the largest savings matrix values as shown in Table 6, with a note that the vehicle has a maximum limit of 2300 kg in its transportation activities.

Table 6. Sequence of Savings Matrix Value

NO.	(i,	j)	VALUE	DEMAND
1	3	13	31,9	3300
2	7	13	29,9	2970
3	13	17	27,9	2640
4	4	15	27,2	240
5	3	12	27,1	750
6	3	17	27,1	780
7	17	18	26,8	90
8	3	4	26,7	840
9	7	12	26,7	420
10	12	13	26,6	2610
11	15	17	25,8	180
12	3	15	25,7	840
13	3	7	25,2	1110

And so on until the 190th savings matrix

Iteration 1 Capacity $1 \rightarrow 3 \rightarrow 13$ 720 + 2580 = 3300 (Decline because over capacity) Iteration 2 Capacity $1 \rightarrow 7 \rightarrow 13$ 390 + 2580 = 2970 (Decline because over capacity) Iteration 3 Capacity $1 \rightarrow 13 \rightarrow 17$ 2970 + 60 = 2640 (Decline because over capacity) Iteration 4 Capacity $1 \rightarrow 4 \rightarrow 15$ 120 + 120 = 240 (Approve) Iteration 5 Capacity $1 \rightarrow 3 \rightarrow 4 \rightarrow 12 \rightarrow 15$ 720 + 120 + 30 + 120 = 990 (Approve)

This iteration calculation is carried out until the most optimal route is obtained that is in accordance with the vehicle's carrying capacity. The results obtained are:

Table 7. Optimal routes for distribution center PT
XYZ with Saving Matrix method

NO.	ROUTE	ROUTE CAPACITY (KG)						
1	1,4,15,3,5,7,12,17,18,1	2250	61,8					
2	1,10,8,11,14,2,21,1	2010	39,8					
3	1,6,9,16,20,1	720	45,2					
4	1,13,1	2300	29,6					
5	1,19,1	2300	10,1					
	TOTAL	9580	186,5					

For the calculation of the total cost, the assumptions used by the author are that each route has a different car and each operating vehicle has an overtime pay.

Total Distribution Cost = Total variable Cost + Total Fixed Cost = (186.5 x 391.67) + (5 x 221,711) = Rp. 1,108,555 + Rp. 73,046 = Rp. 1,181,601

Comparison of the Results of the Nearest Neighbour Method with the Saving Matrix

After the two methods were carried out, the total cost for the Nearest Neighbour method was Rp. 1,396,145 with a total distance of 168.2 km. While the calculation using Saving matrix method obtained the optimum distance data of 186.5 km with a total cost of Rp. 1,181,601.

The saving matrix method has a total distance that is more than using the Nearest Neighbour method. This is because the cost of fixed costs in the Nearest Neighbour method has a higher value than the saving matrix method. The calculation of total costs is influenced by fixed costs and variable costs. The assumption used by the authors is that each route has a different car and each operating vehicle has an overtime pay. Because the Nearest Neighbour method has more routes than the saving matrix method, the expenditure made by this method is also greater.

NO.	METHOD	NUMBER OF VEHICLE (UNIT)	DISTANCE (KM)	COST	PERCENTAGE	
1	Before Using Method	8	200	Rp1.902.022	100%	
2	Nearest Neighbour Method	6	168,2	Rp 1.396.145	73%	
3	Saving Matrix Method	5	186,5	Rp 1.181.601	62%	

Table 8. Percentage before and after using both methods

After doing the calculations that have been done on both methods, the comparison results obtained from the Nearest Neighbour method and the saving matrix method which previously cost Rp.1,902,022, then after obtaining a fee of Rp.1,396,145 for the Nearest Neighbour method and for the method of saving matrix Rp. 1,181,601. With the costs that have been obtained, it can be concluded that from the two methods that the saving matrix method can obtain savings of 38% from the initial cost, so the saving matrix method can be used by XYZ Company to make distributions.

Conclusion

Conclusion

PT XYZ is a pharmaceutical company that produces various kinds of pharmaceutical goods and medical equipment. In addition, PT XYZ also acts as an agent and distributor of chemical raw materials for the pharmaceutical, cosmetic and food industries. PT XYZ has more than 21areas *Distribution Center*. Based on the results of data collection and processing that has been done, we can see that processing data is divided into two, namely primary and secondary data.

The results of data processing using the *Nearest Neighbour Method* show that the optimal route for

product distribution at PT XYZ is divided into five routes, with a total distance of 168.2 km. Based on the results of calculations using the *Nearest Neighbour Method*, we can see that this method obtains total cost data of Rp. 1,396,145. Calculations using Saving matrix method obtained the optimum distance data of 186.5 with a total cost of Rp. 1,181,601.

Based on the data above, we are able to know that in one delivery process the distance is 186.2 km. the total distance travelled will affect the total cost to be generated. The calculation results show that the total cost for this distribution activity is Rp. 1,181,601. This cost consists of the sum of fixed costs with variable costs and the total distance that has been calculated by the saving matrix method.

Suggestions

Suggestions obtained are:

- 1. For further research, it is recommended to compare the results before and after using *Nearest Neighbour method* and saving matrix method.
- 2. For further research, it is hoped that there will be verification of the research results whether they are in accordance with the *real system* or not.

References

- Amri, M., Rahman, A., & Yuniarti, R. (2014). Penyelesaian Vehicle Routing Problem dengan Menggunakan Metode Nearest Neighbour (Studi Kasus: MTP Nganjuk Distributor PT. Coca Cola). Jurnal Rekayasa Dan Manajemen Sistem Industri, 2(1), 36–45.
- [2] Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2014). Rich vehicle routing problem: Survey. ACM Computing Surveys, 47(2), 1–28.
- [3] Dwi Djayanti, R., & Iriani, Y. (2020). Optimization in Determining Routes of Goods Distribution Vehicle Using the Ant Colony Optimization Algorithm Method at PT XYZ. Journal of Information Systems and Informatics, 2(1), 202–215.
- [4] Hutasoit, C. S., Susanty, S., & Imran, A. (2014). Penentuan Rute Distribusi Es Balok Menggunakan Algoritma Nearest Neighbour dan Local Search (Studi Kasus di PT. X). Reka Integra, 2(2).
- [5] Indrawati, I., Eliyati, N., & Lukowi, A. (2016). Penentuan Rute Optimal pada Pengangkutan Sampah di Kota Palembang dengan Menggunakan Metode Saving Matrix. Jurnal Penelitian Sains, 18(3), 168493.
- [6] Ikfan, N., Masudin, I. (2013). Penentuan Rute Transportasi Terpendek untuk Meminimalkan Biaya Menggunakan Metode Saving Matriks. Jurnal Ilmiah Teknik Industri, 12(1), 165-178.
- [7] Madona, E., & Irmansyah, M. (2013). Aplikasi Metode Nearest Neighbour pada Penentuan Jalur Evakuasi Terpendek untuk Daerah Rawan Gempa dan Tsunami. Elektron: Jurnal Ilmiah, 5(2), 39–46.
- [8] Mancini, S. (2016). A real-life Multi Depot Multi Period Vehicle Routing Problem with a Heterogeneous Fleet: Formulation and Adaptive Large Neighbourhood Search based Matheuristic. Transportation Research Part C: Emerging Technologies, 70, 100–112.
- [9] Mohammed, M. A., Ghani, M. K. A., Hamed, R. I., Mostafa, S. A., Ibrahim, D.

A., Jameel, H. K., & Alallah, A. H. (2017). Solving vehicle routing problem by using improved K-Nearest Neighbour algorithm for best solution. Journal of Computational Science, 21, 232–240.

- [10] Molina, J. C., Eguia, I., Racero, J., & Guerrero, F. (2014). Multi-objective Vehicle Routing Problem with Cost and Emission Functions. Procedia - Social and Behavioral Sciences, 160, 254–263.
- [11] Mukhsinin, A., Imran, A., & Susanty, S.
 (2013). Penentuan Rute Distribusi CV.
 IFFA Menggunakan Metode Nearest Neighbour dan Local Search. REKA INTEGRA, 1(2).
- [12] Sutoni, A., & Apipudin, I. (2019). Optimalisasi Penentuan Rute Distribusi Pupuk Untuk Meminimalkan Biaya Transportasi Dengan Metode Saving Matrix. Spektrum Industri, 17(2), 143.
- [13] Pattiasina, T. J., Setyoadi, E. T., & Wijayanto, D. (2018). Saving matrix method for efficient distribution route based on google maps API. Journal of Telecommunication, Electronic and Computer Engineering, 10(2–3), 183–188.
- [14] Wang, X., Zhao, S. Z., Hao, C., & Yan, L.
 (2016). An improved savings method for vehicle routing problem. Proceedings of 2016 2nd International Conference on Control Science and Systems Engineering, pp. 1–4.
- [15] Zirour, M. (2008). Vehicle routing problem: models and solutions. Journal of Quality Measurement and Analysis, 4(1), 205–218.