
PSYCHOLOGY AND EDUCATION (2021) 58(1): 5917-5921 ISSN: 00333077

5917
www.psychologyandeducation.net

Behavioral Analysis of Embedded Linux Device Drivers on BeagleBone

Black

Jignesh J. Patoliya1, Sagar B. Patel 2 , Miral M. Desai 3, Ninad Desai4

1,3 Assistant Professor, 2,4 Student
1,2,3,4 Electronics and Communication Department, C. S. Patel Institute of Technology, Charotar University of Science and

Technology, Anand, Gujarat, India
2sagarp3199@gmail.com

ABSTRACT

In the contemporary era, the Embedded Linux technology is in tremendous demand for various high-end applications like Internet of Things,

Industrial Robotics, Smart Devices, Supercomputers. There is use of kernel device drivers in lowest level of Android and iOS which is emerging

for more development in terms of the efficiency and robustness. The speed for communicating between the devices in all the technologies is the

vital part, hence, the use of appropriate Embedded Linux Device Driver is needed out of IOCTL (Input Output Control), Procfs, Sysfs. The

proposed paper relates to the behavioral analysis of the different types of device drivers on the ARM (Advanced RISC Machine) based platform

BeagleBone Black Board. The implementation of these drivers is depicted in the proposed paper by cross-compiling the device driver from x86

platform to BeagleBone Black platform. The OS running on the BeagleBone Black is Linux kernel based Debian. The device driver is basic

interface between the software and hardware for specific functionality.

Keywords
Embedded Linux, Device Driver, BeagleBone Black Board, Cross-Compilation, Input Output Control (IOCTL)

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction

Embedded Linux is the use of Embedded Systems running

on the Linux kernel. The use of Embedded Linux in all the

major embedded industries have risen exponentially due to

the emergence of various development boards like

Raspberry Pi, BeagleBone Black, ROCKPro64, Asus Tinker

board, Onion Omega2, Odroid-XU4. Linux is utilized in

these applications due to its major advantages like

multitasking, open-source development and support to

plethora of architectures like x86, ARM, MIPS, PowerPC

and Alf-Egil Bogen Vegard Wollan RISC (AVR).

Embedded Linux is used in the plenty of quirky applications

like Robotics, Smart Devices, IoT and ML, etc.

Device Drivers are the simple black boxes interconnecting

software and hardware for implementing the specific

functionality and are often written in C language. These

drivers are loadable kernel modules which can be

dynamically loaded for certain applications in terms of their

hardware functionality. This dynamic loading of modules

reduces memory consumption in kernel space and hence

increases the efficiency of the system. For developing this

driver, we need the cross- compilation supported OS which

can be easily used for deploying the module in BeagleBone

Black. There are three

major types of device drivers namely Character, Block and

Network. Character device driver deals with the byte wise

data transfer and keyboard, mouse, camera are some

examples of character devices. Block device driver deals

with the transfer in form of collection of bytes in which back

and forth communication is possible and pen-drives, hard-

disks are some examples of block device drivers. Network

devices communicate with the use of packets on the system

request and deals with processes like synchronization,

routing, session management, packet handling for Wi-Fi and

Ethernet [13].

Operating System divides the virtual memory into user

space and kernel space for efficient functioning and

authorized functions. Kernel space is reserved for running

the device drivers, kernel extensions, memory management

and process management tasks. Inside the user space, simple

user applications run in the memory area which can be

swapped out when it is needed. There is use of system calls

which helps to talk between the user space and kernel space

for user applications functioning like Real Device Driver,

IOCTL, Procfs, Sysfs, etc.

BeagleBone Black (BBB) is robust and efficient open-

source low-power single-board computer platform for

Embedded Linux development produced by TI (Texas

Instruments). It boots Linux very quickly and has great

community support where developers around the globe

collaborate in the development of the board. It has very high

expandability supporting plethora of Capes (Additional

Hardware modules for high-end specific applications like

Crypto Cape for OS level Security). These boards are

showing the prospering growth in the field of Internet of

Things (IoT), Drones, Robotics, Smart Appliances, Smart

Cities, High end Industrial Applications [1].

Fig 1. BeagleBone Black

PSYCHOLOGY AND EDUCATION (2021) 58(1): 5917-5921 ISSN: 00333077

5918
www.psychologyandeducation.net

The BeagleBone Black has TI Sitara AM3358BZCZ100

Processor with 1 GHz and 2000 MIPS speed. 512 DDR3L

800 MHz SRAM Memory and 4 GB with 8 bit eMMC

onboard flash is present in this Single Board Computer. It

works on 1 GHz ARM Cortex A8 and has GPU of PowerVR

SGX530. It has total external 92 pins in two headers (P8 and

P9 with 46 each). It has Ethernet (10/100 RJ45), SD, MMC,

USB, micro HDMI Connectors on the board. It exhibits

great versatility providing connectivity to large number of

devices using various protocols and standards like 4 x

UART (Universal Asynchronous Receiver Transmitter),

LCD (Liquid Crystal Display), MMC1 (MultiMedial Card),

2 x SPI (Serial Peripheral Interface), 2x I2C (Inter-

Integrated Circuit), ADC (Analog to Digital Converter), 4

Timers, 8 PWMs (Pulse Width Modulation) and 2x CAN

(Controller Area Network). Three on-board buttons are there

namely reset, power and boot. The Software Compatible

with BBB is Linux, Android, and Cloud9 IDE (Integrated

Development Environment) with Bonescript.

Types Of Device Driver Communication

The Real Device Driver is the way of simple interaction

between the kernel space and user space. It uses the kernel

dynamic memory allocation and freeing for storing the value

of input or output required for the hardware. The kmalloc()

and kfree() APIs are used for this storage and functioning.

For transfer of data from user space to kernel space and

vice-versa, copy_from_user() and copy_to_user() APIs are

available. It is used for simple transfer of bytes like basic

GPIO applications. This driver communication is applicable

to mostly the character devices; it is not easily available for

network and block devices.

IOCTL (Input Output Control) is also used for

communicating to devices from kernel space to user space.

It is the most ubiquitous system call used in almost all the

types of device drivers for communication. It is inculcated

for specific purposes of the device for which the kernel does

not have system call by default. Some basic operations that

can be easily done by IOCTL drivers are adjusting the

volume in the system, ejecting the media from CD drive,

changing the baud rate of serial port, changing the led port

numbers, reading or writing the device registers, etc. It is

done by creating IOCTL command in driver and also the

user space application for linking the driver. Furthermore,

IOCTL function is defined in the device driver file in the

kernel. Inside the user-space program, the IOCTL system

call is used to perform the communication.

Procfs is the virtual filesystem which is also used for

interfacing between kernel and user space. It does not exist

on the memory disk [12]. It is used to showcase the

information of the processes running on the system. There is

ample information stored and transferred from kernel to user

space and vice-versa like modules information, information

of interrupts, memory usage, registered devices, partitions,

input output ports and also cpu information. It is also used to

debug the kernel module using kernel proc entry. Procfs

interaction can be implemented using proc filesystem

structure which includes read, write, open and release

functions for interfacing

with user applications. The successful write and read can be

checked in /proc directory in the kernel.

The sysfs virtual filesystem is also efficient way for

communicating between kernel and user. It is also tied to the

whole model of kernel device driver including details of

devices and modules. It contains extensive details of

firmware modules, filesystems, power, classes of devices.

This can be easily done using kernel objects (Kobject) and

/sys directory and sysfs file. It especially provides uniform

way for information and control points transfer including the

device framework when devices are registered in /sys kernel

directory. It is most common type of interaction for the

GPIO input output in the many Embedded Linux based

Single Board Computers like Raspberry Pi and BeagleBone

Black.

Related Work

Many researchers and authors around the globe have carried

out research and analysis on device drivers and below

mentioned are its references.

Andrea C. et. al conducted the comprehensive study of

filesystems used in Linux. There are various insights

including the efficiency of each file systems and also the

improvement of debugging tools [2]. Nirav Trivedi et. al

implemented the Linux based device driver on Linux host

machine. The inserting and removal of module printing the

string Hello World is taken into consideration [3]. Anrey V.

et. al described the most common Linux filesystems in

detail. The study in the paper is performed on the GNU

Linux for specifically measuring the filesystem performance

and efficiency and finally analyzing the best ways to store

the data [4].

Bhushan J. et. al studied the Linux API usages and

compatibility with the devices. The surveys of different

APIs were taken for considering the relative importance of

end-user applications. Also, the concepts of security and

complexity of the Linux APIs were instilled with the use of

IOCTL, fcntl, prctl [5]. Nicholas F. implemented the user-

level device drivers depicting the difference in performance.

More robust techniques are introduced for building the

Linux systems like for high-end devices used for Gigabit

Ethernet connection[6]. Murali B. implemented the device

driver for pseudo device using the loadable kernel module

(LKM). The insertion and removal of modules with the

reliable C language coding is inculcated [7].

Yong C. designed and practised the Embedded Linux File

System using IntelDBPXA250 development platform. The

description of virtual file system and Flash filesystem is

undertaken. The comparison and proper plan of virtual and

physical filesystems is taken for satisfactory and efficient

results for the requirement of proper embedded system [8].

Nithya E. implemented the character device driver to read

the processor’s information using /proc filesystem in Linux.

The proper detailed information related to the addresses in

the process is deeply discussed with virtual addressing

consideration [9].

PSYCHOLOGY AND EDUCATION (2021) 58(1): 5917-5921 ISSN: 00333077

5919
www.psychologyandeducation.net

Device Driver Model

Fig 2. Device Model [10]

Linux Device Driver interfacing with the framework allows

the driver to expose the specific hardware features. The bus

infrastructure is used to detect and communicate with the

hardware. This device driver is interfaced with the user-

space application with the use of the system calls like

procfs, sysfs, kernel APIs and IOCTL.

Implementation

The Real Device Driver implementation on the Single Board

Computer BeagleBone Black is done using simple APIs like

copy_to_user() and copy_from_user() with the inclusion of

kernel device driver file and user space application. The

implementation of Procfs, sysfs and IOCTL is done using

the specific APIs of these system calls as shown below.

Fig 3. Real Device Driver Output

IOCTL Driver is implemented using driver file in kernel

space and user space test application for verifying the data

received or sending the data. There is the common IOCTL

command used in both the files for reading or changing the

data.

Fig 4. IOCTL Driver Output

The Procfs file operations structure is used for reading,

writing the file created inside /proc directory for

communicating between the kernel space and user space.

The echo and cat commands are used directly for writing

and reading the data of the variable in the file inside /proc/

directory respectively.

Fig 5. Procfs Driver Output

Sysfs driver is deployed by creating directory inside

/sys/kernel directory and also creating the sysfs file inside it.

The communication is implemented by creating the sysfs

attribute including the show () and store () APIs for the read

and write operations respectively.

Fig 6. Sysfs Driver Output

Analysis

The IOCTL interface is the fastest because of its direct

access and because the file layer is removed from the

function calls, whereas using sysfs, user needs to get into the

PSYCHOLOGY AND EDUCATION (2021) 58(1): 5917-5921 ISSN: 00333077

5920
www.psychologyandeducation.net

/sys directory for performing the functionality of the driver.

Procfs is old and unstructured interface which store the

information in the memory but sysfs is the inclusion of

almost all the process information and it stores all the

system information in the disk. Normal Device Driver only

performs the basic kernel system calls easily and efficiently

but it lacks in performing higher level applications like

changing the baud rate or increasing the volume.

Furthermore, there is no need of test application in user

space for its functioning in Procfs and sysfs, which accounts

them to be prone to errors compared to simple device driver

or IOCTL interface. Error in the main Procfs or sysfs driver

file can corrupt the kernel or OS as its functions are

processed in the kernel space. IOCTL performs in the

interrupt context as it will execute its driver whenever there

is certain type of interrupt which are stored in

/proc/interrupts file. IOCTL takes less time to undergo

higher number of iterations as compared to sysfs. The

difference is in the milliseconds, but it accounts to the

efficient functioning and real-time processing of the devices

[11].

However, sysfs has a very simple structured interface

compared to the other interfaces. These interfaces are more

flexible than IOCTL. It is often used for simple GPIO tasks.

IOCTL is needed for increasing the functionality of the

driver as it has complex structure available for high-end

applications of devices. The use of these interfaces will

depend on the functions needed for the device drivers.

Conclusion

This detailed analysis of the different communication

interfaces between the kernel space and user space is

presented in the proposed paper which includes the Real

Device Driver, IOCTL interface, and Procfs and sysfs

filesystems. The efficiency of each interface is the vital part

for deciding its use for functioning of the devices. Like

IOCTL is best use for fast efficient complex tasks whereas

sysfs and Procfs deals with the structured GPIO like tasks

easily. The needed functionality and information of process

or system decides which interface is useful for the specific

device driver. Basically, these interfaces are not only the

factor corresponding to the speed of functioning of driver

but also the hardware used must be compatible and robust

for efficient applications. BeagleBone Black is robust and

designed for high-end computing applications and therefore

these interfaces are efficiently encountered in this

Embedded Linux board.

References

[1] A. Nayyar and V. Puri, “A Comprehensive

Review of BeagleBone Technology: Smart

Board Powered by ARM” In International

Journal of Smart Home, Vol. 10, No. 4

(2016)

[2] Andrea C., Lanyue L., Arpaci D., Remzi

H. and Shan Lu, “A Study of Linux File

System Evolution” In 11th USENIX

Conference on File and Storage

Technologies (FAST ’13)

[3] Nirav T., Himanshu P. and Dharmendra

C., “Fundamental Structure of Linux based

Device Driver and Implementation on

Linux Host Machine” In International

Journal of Applied Information Systems

(IJAIS), Vol. 10 No. 4, January 2016

[4] Andrey V., Alexander G., “Research of

Performance Linux Kernel File Systems”

In International Journal of Advanced

Studies (IJAS), Vol. 5, No. 2, 2015

[5] Bhushan T., Chia-Che T., Nafees A.,

Donald E., “A Study of Modern Linux API

Usage and Compatibility” In Stony Brook

Univeristy Conference

[6] Ben L., Peter C., Nicholas F., Stefan G.,

Charles G., Luke M., Daniel P., Yueting

S., Kevin E. and Gernot H., “User-level

Device Drivers: Achieved Performance”

In Journal of Computer Science and

Technology, September 2005

[7] Murali B., “Linux Device Driver Coding

for Pseudo Device” In International

Journal of Computational Engineering

Research (IJCER)

[8] YongChung W., “The Design and Practice

of Embedded Linux File System” In 3rd

International Conference on Management,

Education, Information and Control

(MEICI 2015)

[9] Nithya E., “Implementation of Character –

Mode Device Driver to Read the

Processors GDT” in International Journal

of Innovative Research in Science,

Engineering and Technology

(IJIRSET), Vol. 3, Issue 10,October

2014

[10] Linux Kernel Device Driver Model

(Internet Source):

https://bootlin.com/doc/training/linux-

kernel/linux-kernel-slides.pdf

[11] Linux Procfs Sysfs IOCTL Interfaces

(Internet Source):

https://stackoverflow.com/questions/19554

154/in-general-on-uclinux-is- ioctl-faster-

than-writing-to-sys-filesystem

PSYCHOLOGY AND EDUCATION (2021) 58(1): 5917-5921 ISSN: 00333077

5921
www.psychologyandeducation.net

[12] Robert Love, “Linux Kernel

Development”, 3rd Edition

[13] Alessandro Rubini & Jonathan, “Linux

Device Drivers”, O’Reily,2001

