An Experimental Investigation of Premature Death of Sensor Node used in IoT at Colder Environmental Conditions with Strategies to Mitigate the Same

Dr. Satyanarayana Chanagala
Director Of Academics, Sbit, Khammam

Dr. Rajnikant Mishra
Principal, Bit, Ballarpur

Neelima Dudhe
Assistant Professor, Electrical Engineering Dept., Rcert, Chandrapur

Bhanuprasad Eppe
Assistant Professor, Ece Dept., Vignan Nirula, Guntur

ABSTRACT

The Sensor Node Is A Vital Component Of Iot Technologies. The Main Objective Of This Paper Is To Study The Impact Of The Sensor Field Environment On The Lifetime Of The Battery Of The Sensor Node. Specifically, One Of The Environmental Parameters, Is Chosen For The Experimental Studies Undertaken In This Work. The Lifetime And The Power Consumed By The Sensor Node Are Analyzed At Different Temperatures. The Reasons For The Early Death Of The Battery Of The Sensor Node At Lower Temperatures Are Identified. Some Strategies Are Proposed To Overcome The Same. Experimental Results Have Shown The Life Of The Sensor Node Is 18% More When The Proposed Techniques Are Used.

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction


Further, When The Wsns Are Deployed In Hostile Environments It Is Not Possible To Replace The Exhausted Batteries. Therefore There Is A Need To Use The Energy Of The Battery Minimally To Increase Its Life.

Specifically, When The Wsns Are Deployed In Colder Environmental Conditions, Experimental Investigations Have Shown That The Sensor Node Lifetime Has Been Shortened. Their Reduced Life Is Mainly Attributed To The Untimely Death Of The Battery That Drives The Sensor Node. The Strategies Adopted In This Paper Have Resulted In A Sensor Model Lifetime Enhancement Of 18%.

The Lower Mobility Of Ions In The Electrolyte At A Lower Temperature, Rate Capacity Effect, And Recovery Effect Of The Battery Are Found To Be The Major Causes For The Early Drain Of The Battery. The Reduced Mobility Of The Ions Will Appear As Increased Internal Resistance Of The Battery. Therefore, When The Load Is Connected To The Battery, Apart Of The Power Delivered By The Battery Will Be Dissipated By The Increased Internal Resistance Of The Battery. This Results In A Quick Drain Of The Battery.
The Sensor Node In The Transmitting Mode Increases The Discharging Of The Battery. This Increased Discharge Results In The Covering Of The Cathode Electrode With Inactive Reaction Zones And Thus Making Active Reaction Zones Unavailable. This Is Another Reason For Shortened Battery Life.

The Continuous Discharge Of The Battery Leads To Its Early Death As Compared To The Battery Usage In The Pulsed Mode. The Reason For This Untimely Demise Of The Battery Is Due To The Decrease In The Concentration Of The Positive Ions Near The Cathode And The Increase Of The Same Near The Anode. The Reason For This Untimely Demise Of The Battery Is Due To The Decrease In The Concentration Of The Positive Ions Near The Cathode And The Increase Of The Same Near The Anode. This Results In The Decreased Capacity Of The Battery.

This Paper Discusses The Strategies Which Have Been Adopted To Mitigate The Above-Discussed Problems.

1. Present methodologies for Enhancing the Wsns lifetime


An Inquiry-Based Approach Wireless Sensor System Has Been Investigated In Which A User Would Issue A Request And Anticipate A Response Within A Time-Bound Frame. Increasing The Lifetime Of Dissimilar Wsns Has Taken Place At A Sluggish Pace. Motivated By Ants, And Experimental Information, An Approach Hasbeen Formulated [2].Based On This Information, An Optimal Path On The Construction Graph Is Constructed To Increase The Number Of Coupled Covers. This Approach Is Used To Reflect The Interest Of Device Tasks.

This Technique Has Resulted In The Extension Of The Lifetime Of Heterogeneous Wsns.

The Lifetime Improvement Of Wsns Of The Significant Level With Multiple Sinks That Have The Ability Of Locomotion [3] Has Been Reported.


Random Allocation Of Data To The Sensor Nodes Could Be A Reason For The Early Death Of The Sensor Networks. Alleviating This Problem Has Improved The Lifespan Of The Wireless Sensor Networks [5]. In This Approach, The Authors Presented Distinct Nodes Known As The Mobile Agent. Authors Have Considered A Technique Based On Energy Forecast Which Enabled These Special Nodes To Identify Approximately The Residual Energy In Their Cluster Comprising Of Other Sensors. This Approach Has Resulted In Circumventing The Problem Of Uneven Consumption Of Energy.

In Some Wireless Sensor Applications, There Could Be A Scenario Where Various Regions Involve Dissimilar Levels Of Sensing [6]. To Address This Bottleneck, The Authors Have Proposed A Multi-Objective Sleep-Scheduling Scheme For Differential Coverage In Wireless Sensor Networks To Attain A Better Trade-Off Between Coverage, Lifespan, And Energy Consumption.

The Use Of A Mobile Sink Reduces Energy Consumption. In This Direction, Work Was Reported [7].


A Methodology Named The Coordination Of The Intra-Node [9] In The Case Of End-To-End Delivery Delay Constraints Has Been Investigated. It Resulted In Significant Gains In Wsn’s Lifetime.

One Of The Approaches To Enhance The Wireless Sensor Network Longevity Is To Build A Work-Sharing Forwarding Tree Structure Placed At The Data Collecting Sink Node. But, This Could Result In A Long Path While Communicating With The Sink Node. It Is Unfavorable For Some Time-Critical Applications As Such Applications Require That All The Data Of Sensed Physical Phenomenon Required By The Sink Node. This Situation May Not Suit Some Mission-Critical Applications That Require All Sensed Data To Be Received By The Base Station With The Smallest Lag. An Investigation Is Carried Out In This Direction [10] With Positive Results.


The Randomness That Exists In The Clustering Algorithms Results In Cluster Heads More Than The Required. Investigation In This Direction Has Been Undertaken [14] With An Approach To Control The Randomness Present In Leach’s Clustering Algorithm.


Unintelligent Discharge Of The Battery Results In Its Early Death. This Untimely Demise Of The Battery Of The Sensor Node Is The Result Of The Rate Capacity Effect Of The Battery. This Effect Has Been Mitigated By The Authors [17] Using An Ingenious Technique.

Information Reliability And Network Lifetime Are Two Important Attributes Of Wsns. The Work By Authors [18] In This Domain Has Resulted In Significant Improvement In The Wsns Lifetime.


2. Merits Of The Proposed Methods
One Of The Main Reasons For The Quick Drain Of The Battery Of The Sensor Node Is Its Unintelligent Discharge. Rate Capacity And Recovery Effect Of The Battery Play A Vital Role Which Decides The Battery Lifetime. Further, The Sensor Node Parameters Viz. Sampling Interval And Power Level Of Transmission Have A Direct

The First Strategy Used To Circumvent The Low-Temperature Problem Is To Compress The Data Before We Transmit It To The Sink Node. Huffman Coding Is Used To Compress The Data In The Present Work. The Second And Third Strategies Are Based On A Kind Of Synchronization Between The Rate Capacity Effect And Recovery Effect With Sensor Node Parameters Viz. Power Level Of Transmission And Sampling Interval. When The Discharge Level Of The Battery Is High This Corresponds To A Higher Level Of Power Level Transmission, This Causes The Early Death Of The Battery Of The Sensor Node. Therefore, There Is A Necessity To Identify A Power Level Of Transmission So That The Rate Capacity Effect Is Minimal, And At The Same Time Not Compromising On The Data Received By The Sink Node. The Lower Sampling Interval Put More Stress On The Battery Of The Sensor Node. An Arbitrary Choice For The Sampling Interval Which Happens To Be At The Lower End Would Be Detrimental And Result In The Quick Drain Of The Battery. The Reason For Its Early Exhaustion Is Due To Insufficient Idle Time At The Lower Sampling Interval Of The Sensor Node. Hence, There Is A Need To Identify The Value Of The Sampling Interval, So That The Battery Of The Sensor Node Gets Enough Time To Idle During Which It Regains Its Previous Voltage. This Results In An Improvement In The Battery Life Of The Sensor Node.

3. Experimental Arrangement
Sensor nodes are fabricated and each sensor node consists of three sensors viz. Temperature sensor, Accelerometer, and Light Sensor. These Sensors Are Interfaced To The Microcontroller Via Lm324. It Is A Quad Op-Amp Integrated Circuit From Texas Instruments. The Microcontroller Used In The Present Work Is Pic18f252 Made By Microchip. A Lithium-Ion Battery With The Specification Of 2200mAh, 3.7v Is Chosen. Three Such Batteries Are Used To Energize Each Sensor Node. Ic7805 Is Used To Provide Regulated Five Volts To The Microcontroller Through Ic 2941 For Supply Efficiency Improvement. Wireless Communication Between The Nodes Is Facilitated By Cc2500 Transceiver. The Same Transceiver Is Embedded Into The Sink Node. The Receiver Node Output Is Interfaced To The Computer To Save The Experiment Results. The Experimental Arrangement Is As Shown In The Figure.1

Figure 1. Experimental Arrangement Of The Fabricated Sensor Nodes
4. Experimental results
4.1. Lifetime of the sensor node at various temperatures without data compression and with data compression

As illustrated in Figure 2, the power dissipation is 0.9 Watts at 10°C. However, when the data compression is applied, the power consumed by the sensor node has decreased to 0.8 Watts. Thus, the data compression has resulted in a power dissipation improvement of 11.11%.

At 15°C, the improvement in the dissipation with data compression is 2.5%.

The investigative studies have revealed that the decrease in the lifetime of the sensor node at colder conditions is due to the reduced mobility of the ions flowing through the electrolyte of the battery. The reduced mobility of the ions manifests as increased internal resistance of the battery. Thus, when the battery is discharged, a reasonable component of the energy of the battery is dissipated by the internal resistance of the battery, leading to premature exhaustion of the battery.

It is evident from Figure 2 that with the increase in temperature, there is a decrease in the power dissipation of the sensor node. This trend is observed up to 35°C. However, there is a marginal increase in the power dissipation after 35°C. This rise in power dissipation could be attributed to battery self-discharge at a relatively higher temperature. These results agree with the anticipations made in the earlier part of this paper.

Figure 3 illustrates the effect of the sensor field temperature on the lifetime of the sensor node. At 10°C, the sensor node lifetime is 554 minutes without data compression. However, the lifetime has increased to 585 minutes with data compression. This improvement in the lifetime is equivalent to 5.29%.

At 15°C, the sensor node lifetime is 575 minutes without data compression. It increases to 592 minutes with data compression. It is equivalent to 2.8% enhancement in the sensor node lifetime.

This trend continues up to 35°C. However, after this temperature, the lifetime decreases even with the increase in temperature. This could be due to the self-discharge of the sensor node battery at relatively higher temperatures.

5.2 Lifetime of the sensor node at various temperatures with optimum sampling interval.

An algorithm has been designed by the...
Authors To Find The Optimum Sampling Interval Of The Sensor Node. From The Experimental Results, It Is Evident That Operating The Sensor Node At An Optimum Value Has Resulted In Reduced Power Consumption.

In The Present Work, The Optimum Value For The Sampling Interval Is Found To Be 0.62 Seconds. At 0.62 Seconds, The Power Dissipated By The Sensor Node Is 0.35 Watts. However, When The Sensor Node Sampling Interval Is 0.2 seconds, The Power Dissipation Of The Node Is 0.78 watts. Thus Operating The Sensor Node At 0.62 Seconds As Compared To Its Operation At 0.2 Seconds Consumes 55% Less Power. Further, The Lifetime Of The Battery, Which Is The Lifetime Of The Sensor Node Operated At 0.62 Seconds Is 722 Minutes, Whereas The Lifetime At 0.2 Seconds Is 590 Minutes. This Is Equivalent To 18% Improvement In The Sensor Node Lifetime When Operated At The Optimum Value. Therefore, It Is Evident That An Arbitrary Selection Of The Sampling Interval Would Result In A Lower Lifetime For The Sensor Node.

Now The Sensor Node At The Lower Temperature Is Operated At The Optimum Sampling Interval To Enhance Its Lifetime.

![Graph showing power dissipation versus temperature at the sampling interval of 0.62 seconds](image)

Figure 4. The graph shows power dissipation versus temperature at the sampling interval of 0.62 seconds.
Figure 5. The graph shows lifetime versus temperature at the sampling interval of 0.62 seconds.

Figure 4 and Figure 5 show the graphs of power dissipation and the sensor node lifetime to the temperature at the optimum sampling interval of 0.62 seconds. The improvement in the lifetime at 35°C is 24.81% with data compression and 22.82% without data compression as compared with their values at the sampling interval of 0.2 seconds.

5. Conclusion
For the successful operation of IoT technologies, sensor nodes must perform well. The longevity of sensor nodes is also an important parameter from the purview of economics. When the IoT technologies depend on the information generated by the sensors, which are placed in detrimental conditions like colder environmental conditions, sensor nodes must have extended lifetimes. The studies conducted during the research revealed that the lifetime of the sensor network reduces to a larger extent owing to the premature exhaustion of the electrochemical battery. Using the strategies of data compression and operating the sensor node at an optimum sampling interval of 0.62 seconds, the sensor node lifetime is improved by 18%.

References

1. Youngsang Yun, Xia Y, “Maximizing the Lifetime of Wireless Sensor Networks With Mobile Sink In Delay-Tolerant Applications,” Ieee Transactions On Mobile Computing,


22. Satyanarayana Chanagala And Zafar Jawed Khan, “Temperaturecriticalboundaryconditionsfor maximizingthelifetimeofwirelesssensor network,”


www.psychologyandeducation.net