A Note On Rings Of Real Valued Bc-Continuous Functions

Neeran T. Al Khafaji¹, Mohammed M. AL-Haideri²

^{1,2} Kufa university, Faculty education for girls, Mathematics department, Najaf, Iraq

ABSTRACT

Some basis properties of bc-continuous functions are considered in this work. We establish and study the ring of all real valued bc-continuous functions on topological space $(\mathcal{M}, \mathfrak{I})$ and denoted by $C_b(\mathcal{M})$. It is proved that the ring of all real valued bc-continuous functions $C_b(\mathcal{M})$. is isomorphic to the $C_b(\mathcal{M})$, where \mathcal{M}_b° is b° -dimensional space

Keywords

b- open set, b° -dimensional space, b-compact space, bc-continuous functions, q-component

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction

Throughout this paper, $(\mathcal{M}, \mathfrak{F})$ and $(\mathcal{N}, \mathfrak{T})$ always represent a topological space and they will simply be written \mathcal{M} and \mathcal{N} . Andrijevic[1] defined the concept of b-open sets as new class of generalized open sets. In 2013, Tahir [5] called function $\pi: (\mathcal{M}, \mathfrak{F}) \rightarrow (\mathcal{N}, \mathfrak{T})$ bc-continuous functionif for each $a \in \mathcal{M}$ and each open set G containing $\pi(a)$, such that $\mathcal{N} - G$ is b-compact relative to \mathcal{N} , there exists an open set F containing a such that $\pi(F) \subseteq G$.

For a topological space $(\mathcal{M}, \mathfrak{F})$, let $\mathcal{C}(\mathcal{M}, \mathcal{G})$ denotes the ring of all continuous functions from \mathcal{M} into \mathcal{G} [6]. If \mathcal{G} is the ring of real numbers \mathbb{R} , we will denote by $\mathcal{C}(\mathcal{M})$ the ring of all continuous functions from \mathcal{M} to \mathbb{R} . Moreover, $\mathcal{C}_{b}(\mathcal{M})$ denotes to the set of real valued of bc-continuous function \mathcal{M} . Abjection function $i : (\mathcal{M}, \mathfrak{F}) \rightarrow (\mathcal{N}, \mathfrak{T})$ is said to be b-homemorphism[6] if the function i and the inverse function i^{-1} are bc-continuous. Moreover, we call $(\mathcal{M}, \mathfrak{F})$ and $(\mathcal{N}, \mathfrak{T})$ are b-homemorphic and denoted by $\mathcal{M} \cong_{b} \mathcal{N}$.

Whenever $\kappa \in C(\mathcal{M})$, we will denote by $Z(\kappa)$ to the zero setof κ , and Z(M) denotes to all zero-set $Z(\kappa)$. Additionally, if $\pi \in C_b(\mathcal{M}), Z_b(\mathcal{M})$ denotes to all zero-sets Z b (π).

We also need to recall the definition of the component. If $a \in \mathcal{M}$, the component C_a is the union of all connected subspaces of $(\mathcal{M}, \mathfrak{I})$ which contain a. Moreover, the q-component Q_a of a point $a \in \mathcal{M}$ is the intersection of all clopen (open and closed) subsets of a topological space \mathcal{M} which contain a.

Recall that in [7], A topological space $(\mathcal{M}, \mathfrak{I})$ is said to be $b-T_1$ -space if for every pair of distend points a and b in M, there exists a b-open set $H \subset \mathcal{M}$ such that $a \in H$ and $b \notin H$.

Preliminaries

Now, we introduce some basis definitions and facts of bopen sets [1], compactness [5], bc-continuous function.

Definition 2.1.

A subset F is said to be b-open set if $F \subseteq cl(int(F)) \cup int(cl(F))$. The complement of a b-open set is b-closed, or equivalently, if $int(cl F) \cap cl(int F) \subseteq F$.

For a subset A of a space $(\mathcal{M}, \mathfrak{F})$ the b-interior of A is the union of all b-open subsets of \mathcal{M} and denoted by $int_b(A)$, and the b-closure of A is the intersection of all b-closed subsets of A and denoted by $cl_b(A)$. A subset S of \mathcal{M} is called \mathscr{O} – open set if $S = int_b(S)$. In other words, A set S is \mathscr{O} – open if and only if S is a union of b- open set. Also, a set u is called \mathscr{O} - closed if and only if $U = cl_b(U)$ and a set U is \mathscr{O} - closed if and only if U is an intersection of b- closed set. Additionally, we will denote BO(\mathcal{M}) to the family of all b-open in $(\mathcal{M}, \mathfrak{F})$.

Definition 2.2.

A topological space $(\mathcal{M}, \mathfrak{I})$ is said to be b-zero dimensional if and only if it is b- T_1 -space and for each point $a \in \mathcal{M}$ and $a \notin B$ where B is closed subset of \mathcal{M} , there exists a b-open set A such that $A \cap B = \emptyset$. We will denote it by b^* -dimensional

Or an equivalent definition a topological space $(\mathcal{M}, \mathfrak{I})$ is called b° -dimensional if it is b- T_1 -space and has a base containing of b-open set.

Definition 2.3.

Let F be a subset of a topological space $(\mathcal{M}, \mathfrak{I})$,

A cover $\{\mathfrak{w}_i | i \in \Omega\}_{\text{of F by b-open sets of }} \mathcal{M}$ is called bopen.

F is defined to be b-compact relative to \mathcal{M} if every b-open cover of F has a finite subcover.

A space $(\mathcal{M}, \mathfrak{F})$ is defined to be b-compact if and only if M is b-compact relative to M.

Definition2.4.

A function $\pi: (\mathcal{M}, \mathfrak{F}) \longrightarrow (\mathcal{N}, \mathfrak{T})$ is defined to be bccontinuous if for each $a \in \mathcal{M}$ and each open set G containing $\pi(a)$, such that $\mathcal{M} - G$ is b-compact relative to N, there exists an open set F containing a such that $\pi(F) \subseteq G$

Definition 2.5.

A topological space $(\mathcal{M}, \mathfrak{F})$ is called b-Hausdorff if for pair of distinct points a and b in \mathcal{M} , there exists two b-open sets F and G such that $a \in F$, $b \in G$ and $F \cap G = \emptyset$.

Some properties of bc-continuous functions.

The results of this section will be extremely significant in the next section.

Proposition 3.1

.Every continuous function is bc-continuous.

Proof. $\alpha : (\mathcal{M}, \mathfrak{F}) \to (\mathcal{N}, \mathfrak{T})$ be a continuous function, and let $a \in \mathcal{M}$, G be an open set containing α (a)such that $\mathcal{M} - G$ is b-compact relative to \mathcal{N} . Since $a \in \mathcal{M}, G$ is an open set containing α (a) and α is continuous, then there exists open set U containing a such that $\alpha(U) \subseteq G$. Then α is bc-continuous function. \square

Remark 3.2.

The invers of the above proposition is not necessary to be true.

Two disjoint subsets F and G of space $(\mathcal{M}, \mathfrak{I})$ is said to be completely separated if there is a bc-continuous function $f \in C_b(\mathcal{M})$ that separates them. In addition, for the subset F and G such that $F \cap G = \emptyset$, then F and G be bcompletely separated if and only if they are being in two disjoint members of $\mathbb{Z}_b(\mathcal{M})$.

Proposition 3.3.

Let $(\mathcal{M}, \mathfrak{F})$ be a topological space and $(\mathcal{N}, \mathfrak{F})$ is bcompact space, if $\pi : (\mathcal{M}, \mathfrak{F}) \to (\mathcal{N}, \mathfrak{F})$ be bccontinuous function, then the following statements hold. If $a \in \mathcal{M}_{,b \text{ in}} \mathcal{N}_{\text{ and }} \pi(a) = b_{, \text{ then }} \pi(Q_a) \subseteq Q_b$. If N is a b-T_1-space, then π is constant on each q-componet in M .

Proof. 1) Let c in Q_a and space $\pi(c) \notin Q_b$. Then there is a closed and open set V in \mathcal{N} such that $\pi(c) \in V$ and $V \cap Q_b = \emptyset$, that leads to $b \notin V$. since \mathcal{N} is b-compact space and $\mathcal{N} - V$ is closed, then $\mathcal{N} - V$ is b- closed. So, $\mathcal{N} - V$ is b-compact relative to \mathcal{N} . Because of π is bccontinuous function, exists then there a b- open set H in \mathcal{M} containing c such that $\pi(V) \subseteq H$. Also, $\pi(Q_b) \subseteq V$ (since $\pi(Q_a) \subseteq H$) and this implies to $\pi(a) = b$ in V, but this leads to the contradiction. \Box 2) Let $b \in Q_a$ and $\pi(a) \neq \pi(b)$, so there exsits an open set V in \mathcal{N} such that $\pi(a)$ in V but $\pi(b) \notin V$

open set V in \mathcal{N} such that $\pi(a)$ in V, but $\pi(b) \notin V$. $\mathcal{N} - V$ is b-compact relative in \mathcal{N} (since \mathcal{N} is b-compact space). Because π is bc-continuous, then there exists a bopen set H such that $\pi(H) \subseteq V$. However, any b-open set containing a, also contains b, for b in Q_a . So $\pi(b)$ in V, but that leads to contradiction. \Box

Corollary 3.4

If $(\mathcal{M}, \mathfrak{F})$ be a topological space, then for every $\pi \in C_b(\mathcal{M})$ the following cases holds.

- 1. On each q- component in \mathcal{M}, π is constant.
- 2. For $a \in \mathcal{M}$ the zero set $Z(\kappa) = \bigcup_{a \in Z(\kappa)} Q_a$

The ring $C_b(\mathcal{M})$

Theorem 4.1.

Whenever $(\mathcal{N}, \mathfrak{T})$ is b-compact, then $C(\mathcal{M}) = C_b(\mathcal{M})$

Proof. The first implication $C(\mathcal{M}) \subset C_b(\mathcal{M})$ is clear. For another side, we should prove that $C_b(\mathcal{M}) \subset C(\mathcal{M})$. Let $\pi : (\mathcal{M}, \mathfrak{F}) \to (\mathcal{N}, \mathfrak{T}) \in C_b(\mathcal{M})$, and let $a \in \mathcal{M}$, H is an open set containing $\pi(\mathbf{a})$. Indeed, $\mathcal{N} - H$ is closed, then $\mathcal{N} - H$ is b-compact (since \mathcal{N} is bcompact). Because of π is bc-continuous then there exists an open set A containing a, such that $\pi(\mathbf{a}) \subseteq H$. Hence $\pi : (\mathcal{M}, \mathfrak{F}) \to (\mathcal{N}, \mathfrak{T})$ is continuous. \Box

Proposition 4.2.

Whenever $(\mathcal{M}, \mathfrak{I})$ is a topological space. If F is a \mathscr{O} -closed subset of \mathcal{M} and a in \mathcal{M} -F, then there exsits θ in $\mathcal{C}_b(\mathcal{M})$ such that $\theta(F) = \{1\}$ and $\theta(Q_a) = \{0\}$.

Proof. Since $\mathcal{M} - F$ is b-open, then there exists a b-open set H containing a such that $H \cap F = \emptyset$. Now define an idempotent i with Z(i) = H. In other words, $i(H) = \{0\}$ and $i(\mathcal{M} - H) = \{1\}$. It is easy to see that i in $C_b(\mathcal{M})$, $i(Q_a) = 0$ because of $Q_a \subset H$ and $i(F) = 1_{\Box}$

Proposition 4.3.

For a topological space $(\mathcal{M}, \mathfrak{I})$, \mathcal{M} is b-Hausdorff if and only if for each $a \in \mathcal{M}$, $Q_a = \{a\}$.

Proof. Suppose that \mathcal{M} is b-Hausdorff space and a, b in \mathcal{M} such that $a \neq b$, then there exists a b-open set F containing a but not b. This leads to $b \notin Q_a$, i.e., Q_a is single.

Conversely, let a and b in \mathcal{M} such that $a \neq b$. So there exists a b-open set F such that $a \in F$ and $b \notin F$, i.e., \mathcal{M} is Hausdorff.

Next, we will explain that $C_b(\mathcal{M})$ is isomorphic with $C(\mathcal{N})$, where \mathcal{N} is a b^* -dimensional.

Theorem 4.4

.If $(\mathcal{M}, \mathfrak{I})$ is a topological space, then there exists a b° -dimensional space $\mathcal{M}_{b^{\circ}}$ such that $C_b(\mathcal{M}) \cong C(\mathcal{M}_{b^{\circ}})$.

Proof. Suppose that Q_a is the q-compact of a, for each a in \mathcal{M} , and let $\mathcal{M}_{b^{o}} = \{ Q_a \mid a \in \mathcal{M} \}$ is the decomposition. Moreover, we will consider τ is a topology on $\mathcal{M}_{b^{o}}$, so that *H* in τ if and only if $\bigcup_{Q_a \in H} Q_a$ is \mathscr{B} -open in \mathcal{M} . It is easy to see that τ is a topology because $\mathcal{M} = \bigcup_{Q_a \in \mathcal{M}_{b^o}} Q_a$ and $\emptyset = \bigcup_{Q_a \in \emptyset} Q_a$ lead to \mathcal{M}_{b^o} and Q are open. If A and B are open subsets of M bo then $\bigcup_{Q_a \in A \cap B} Q_a = (\bigcup_{Q_a \in A} Q_a) \cap (\bigcup_{Q_a \in B} Q_a) \text{leads to } A \cap B \text{ is}$ open in $\mathcal{M}_{b^{o}}$. Also, it is clear for each A_{1} in $\mathcal{M}_{b^{o}}$, $\bigcup_{1} A_{1}$ is open in $\mathcal{M}_{b^{o}}$. Additionally, we can show that $\mathcal{M}_{b^{o}}$ is Hausdorff space, since if Q_a and Q_b in \mathcal{M}_{b^o} such that $Q_a \cap Q_b = \emptyset$ and $a, b \in \mathcal{M}$, then $a \notin Q_b$ and because Q_b is &-closed.So, from proposition [4.2]we can get an idempotent *i* in $C_b(\mathcal{M})$, such that $i(Q_b) = 0$ and $i(Q_a) = 1$. If we suppose that $K = \{Q_c | c \in Z(i)\}$, then $Z(i) = \bigcup_{Q_c \in K} Q_c \text{ leads to } K \text{ is a b-open subset of } \mathcal{M}_{b^o} \text{ .}$

In addition, $Q_b \in K$ but $Q_a \notin K$ in other words \mathcal{M}_{b^o} is b-Hausdorff space. Therefore, it is Hausdorff.

Now, we need to explain $\mathcal{M}_{b^{\circ}}$ is $b^{\circ} - dimension$. Let K be closed set in $\mathcal{M}_{b^{\circ}}$ and $Q_b \notin K$. Therefore, $G = \bigcup_{Q_a \in K} Q_a$ is a b-closed subset of \mathcal{M} and $b \notin G$. Hence, by proposition [4.3], there exists a b-open subset V of, such that $G \subset V$ and $b \notin V$.

 $\bigcup_{c \in V} Q_c = V \text{ leads to } T = \{Q_c | c \in V\} \text{ is a b-open subset of } V. \text{ It is clear that } K \subseteq T \text{ and } Q_b \notin K \text{ , so } \mathcal{M}_{b^o} \text{ is} b^\circ \text{-dimensional.}$

Now, we need to prove that $C_b(\mathcal{M}) \cong C(\mathcal{M}_{b^o})$. Hence we define $\pi : C_b(\mathcal{M}) \to C(\mathcal{M}_{b^o})$ by $\pi(h) = h_{b^o}$ for each $h \in C_b(\mathcal{M})$ and h_{b^o} is define by $h_b \cdot (Q_a) = h(a)$ for each a in \mathcal{M} . By corollary (3.4), it is clear that π is well defined. Furthermore, $h_{b^o} \in C(\mathcal{M}_{b^o})$ for $h \in C_b(X)$. clearly if $h_{b^o}(Q_a) = f(a) = z$ then for each $\epsilon > 0$, there exsits a bopen subset K of \mathcal{M} containing a such that $h(K) \subseteq (z - \epsilon, z + \epsilon)$ leads to h_{b^o} in $C(\mathcal{M}_{b^o})$.

If $\pi(h) = \pi(f)$, where h, f in $C_b(\mathcal{M})$ then $h_{b^\circ} = f_{b^\circ}$ leads to $h(a)=h_{b^\circ}(Q_a) = f_{b^\circ}(Q_a) = f(a)$, for all $a \in \mathcal{M}$. So,h=f, in other words, π is one-to-one. Moreover, it is easy to see that π is homomorphism because $\pi (h + f) = (h + f)_{b^{\circ}}$ and

 $(h+f)_{b^o}(Q_a) = (h+f)(a) = h(a) + f(a) = h_{b^o}(a)$ + $f_{b^o}(a)$ for each Q_a in \mathcal{M}_{b^o} . And this leads to $\pi (h+f) = \pi (h) + \pi (f)$, for all h, f in $\mathcal{C}_b(\mathcal{M})$, therefore, π is homomorphism.

Now, we will show that π is onto. suppose that $f \in \mathcal{C}(\mathcal{M}_{b^o})$ and we define $h: \mathcal{M} \to \mathbb{R}$ by $h(a) = f(Q_a)$ for all a in \mathcal{M} and it is bc-continuous.

Clearly, if $a \in \mathcal{M}$, $h(a) = h(Q_a) = z$ and let $\epsilon > 0$ is given, then there is an open subset G of \mathcal{M}_{b^o} containing Q_a such that $f(G) \subseteq (z - \epsilon, z + \epsilon)$. We can see that is enough to consider G-open subset $H = \bigcup_{Q_z \in H} Q_z$ of \mathcal{M} .

If fact, $a \in H$ and $h(H) \subseteq (z - \epsilon, z + \epsilon)$ which leads to in $C_b(\mathcal{M})$. It has been seen from definition of h and π that $\pi(h) = f$. Therefore, we have proved that π is onto.

Acknowledgment.

The authors would like to thank the Ministry of Higher Education and scientific research of Iraq for supporting the project.

References

- [1] D.Andrijevic, On b-open sets.Mat.Vesnik,48(1996),59-64.
- [2] L. Gillman and M. Jerrison, Rings of continuous functions, D. Van Nostrand, N. Y. 1960.
- [3] M.D. Crossley, Essential topology ,Springer London Dordrecht Heidelberg NewYork,(2010).
- [4] M. Ganster and M. Steiner, (2007). On some questions about b-open sets. Questions and answers in general topology, 25(1),(2007),45-52.
- [5] N. Tahir and H. Ali, bc-continuous function, Journal of Babylon University/Pure and Applied Sciences,6(21),(2013),1994-2000.
- [6] S. Afrooz, F. Azarpanah and O. A. S. Karamzadeh, Goldie dimension of rings of fractions of C(X), Quaest. Math. 38, no. 1 (2015), 139–154.
- [7] S. K. Gaber, On b-Dimension Theory, M .S. c. Thesis University of AL-Qadissiya, College of Mathematics and computer Science, (2010).