User-Query Processing through Dynamic Tweets Status Recommender System

Main Article Content

V. Kakulapati, D. Vasumathi, G. Suryanarayana


With increasing user information volume in online social networks, recommender systems have been an effective method to limit such information overload. The requirements of recommender systems specified, with widespread adoption in many internet social Twitter, Facebook, and Google online applications. In recent years,  the  micro-blogging  in  Twitter  has  brought  greater  importance  to  online  users  as  a  channel  spreading knowledge  and  information.  Through  Twitter,  users  can  find  the  relevant  information  on  the  search  they perform,  but  understanding  the  past,  present,  and  future  information  relevant  to  the  investigation  source  is needed real-time information. Estimating the successful tweet status (history, ongoing, and prospective) among the huge population of Twitter members is important to satisfy the needs of Twitter online content readers. In this paper, a Dynamic Tweets Status Recommender System (DTSRS) is designed by creating a set of dynamic recommendations to a Twitter user based on usability, consisting of people who post tweets, which is exciting present and future. The proposed recommender system is implemented through two approaches: the first is to analyze  the  Twitter  member  online  tweets,  select  and  understand  the  content  of  that  tweet,  and  the  second predicts  the  understanding  of  the  tweet  content,  suggest  the  dynamic  status  of  the  tweets.  In  this  paper,  the Twitter user tweets' views are expressed after examining the depth of content, different types of user interfaces, text filtering, and machine learning technique. The set of results through tweets experimentations with database operators carried out to evaluate and comparability the proposed recommender system's performance.


Article Details